An Introduction to Erythropoiesis Approaches

Part of the Methods in Molecular Biology book series (MIMB, volume 1698)


Many experimental models have been used to study erythropoiesis. Even prior to the advent of the genetic manipulation of animal models, erythropoiesis was examined in the mouse, chicken, sheep, goat, and rabbit, among other vertebrates. Erythroid cell lines derived from human blood cancers were also very useful, as they could be genetically manipulated more easily than whole animals. Genetic models in the mouse, zebrafish, and frog have provided a plethora of information advancing our understanding of erythropoiesis, and remain gold standards in the field for studies of hemoglobin switching, and experiments to study authentic blood cell development. Mouse and human embryonic stem (ES) and induced pluripotent (iPS) cells can be differentiated to erythroid cells in culture, though their use is somewhat limited by their propensity to express only the embryonic and fetal globin genes. Some very useful cell lines have been developed by manipulating ES or fetal liver erythroid progenitor cells from knockout mouse models. In recent years, our understanding of erythropoiesis has improved, due to the ability to knock down genes in native human hematopoietic stem and progenitor cells derived from umbilical cord blood or bone marrow, and differentiate them ex vivo to the erythroid lineage. These native cells, and cell lines derived from them, are now providing essential information about human erythropoiesis, which is complementary to that obtained from animal studies. This review provides some perspective about the cell and animal models used to study erythropoiesis over the years.

Key words

Erythroid cell lines Mouse models of erythropoiesis Zebrafish models of erythropoiesis Erythroid cell flow cytometry Globin gene expression Erythroid chromatin immunoprecipitation assays (ChIP) Chromosome conformation capture (3C) 



Anna Kovilakath provided thoughtful suggestions and critical evaluation of this manuscript.


  1. 1.
    Haar JL, Ackerman GA (1971) A phase and electron microscopic study of vasculogenesis and erythropoiesis in the yolk sac of the mouse. Anat Rec 170:199–223CrossRefPubMedGoogle Scholar
  2. 2.
    Haar JL, Ackerman GA (1971) Ultrastructural changes in mouse yolk sac associated with the initiation of vitelline circulation. Anat Rec 170:437–455CrossRefPubMedGoogle Scholar
  3. 3.
    Ginder GD, Wood WI, Felsenfeld G (1979) Isolation and characterization of recombinant clones containing the chicken adult beta-globin gene. J Biol Chem 254:8099–8102PubMedGoogle Scholar
  4. 4.
    Haynes JR, Rosteck P Jr, Schon EA, Gallagher PM, Burks DJ, Smith K, Lingrel JB (1980) The isolation of the beta A-, beta C-, and gamma-globin genes and a presumptive embryonic globin gene from a goat DNA recombinant library. J Biol Chem 255:6355–6367PubMedGoogle Scholar
  5. 5.
    Garner KJ, Lingrel JB (1988) Structural organization of the beta-globin locus of B-haplotype sheep. Mol Biol Evol 5:134–140PubMedGoogle Scholar
  6. 6.
    Evans MJ, Lingrel JB (1969) Hemoglobin messenger ribonucleic acid. Synthesis of 9S and ribosomal ribonucleic acid during erythroid cell development. Biochemistry 8:3000–3005CrossRefPubMedGoogle Scholar
  7. 7.
    Perrine SP, Swerdlow P, Faller DV, Qin G, Rudolph AM, Reczek J, Kan YW (1989) Butyric acid modulates developmental globin gene switching in man and sheep. Adv Exp Med Biol 271:177–183CrossRefPubMedGoogle Scholar
  8. 8.
    Scher W, Parkes J, Friend C (1977) Increased carbonic anhydrase activity in Friend erythroleukemia cells during DMSO-stimulated erythroid differentiation and its inhibition by BrdU. Cell Differ 6:285–296CrossRefPubMedGoogle Scholar
  9. 9.
    Klein E, Ben-Bassat H, Neumann H, Ralph P, Zeuthen J, Polliack A, Vanky F (1976) Properties of the K562 cell line, derived from a patient with chronic myeloid leukemia. Int J Cancer 18:421–431CrossRefPubMedGoogle Scholar
  10. 10.
    Martin P, Papayannopoulou T (1982) HEL cells: a new human erythroleukemia cell line with spontaneous and induced globin expression. Science 216:1233–1235CrossRefPubMedGoogle Scholar
  11. 11.
    Kurita R, Suda N, Sudo K, Miharada K, Hiroyama T, Miyoshi H, Tani K, Nakamura Y (2013) Establishment of immortalized human erythroid progenitor cell lines able to produce enucleated red blood cells. PLoS One 8:e59890CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lindenbaum MH, Grosveld F (1990) An in vitro globin gene switching model based on differentiated embryonic stem cells. Genes Dev 4:2075–2085CrossRefPubMedGoogle Scholar
  13. 13.
    Chang KH, Nelson AM, Cao H, Wang L, Nakamoto B, Ware CB, Papayannopoulou T (2006) Definitive-like erythroid cells derived from human embryonic stem cells coexpress high levels of embryonic and fetal globins with little or no adult globin. Blood 108:1515–1523CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Chang CJ, Bouhassira EE (2012) Zinc-finger nuclease-mediated correction of alpha-thalassemia in iPS cells. Blood 120:3906–3914CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Bouhassira EE (2013) Therapeutic potential of hematopoietic cells derived from pluripotent stem cells. Expert Opin Biol Ther 13:1099–1102CrossRefPubMedGoogle Scholar
  16. 16.
    Uchida N, Haro-Mora JJ, Fujita A, Lee DY, Winkler T, Hsieh MM, Tisdale JF (2017) Efficient generation of beta-globin-expressing erythroid cells using stromal cell-derived induced pluripotent stem cells from patients with sickle cell disease. Stem Cells 35:586–596CrossRefPubMedGoogle Scholar
  17. 17.
    Chan FY, Robinson J, Brownlie A, Shivdasani RA, Donovan A, Brugnara C, Kim J, Lau BC, Witkowska HE, Zon LI (1997) Characterization of adult alpha- and beta-globin genes in the zebrafish. Blood 89:688–700PubMedGoogle Scholar
  18. 18.
    Stainier DY, Weinstein BM, Detrich HW III, Zon LI, Fishman MC (1995) Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. Development 121:3141–3150PubMedGoogle Scholar
  19. 19.
    Ciau-Uitz A, Monteiro R, Kirmizitas A, Patient R (2014) Developmental hematopoiesis: ontogeny, genetic programming and conservation. Exp Hematol 42:669–683CrossRefPubMedGoogle Scholar
  20. 20.
    Orkin SH, Zon LI (1997) Genetics of erythropoiesis: induced mutations in mice and zebrafish. Annu Rev Genet 31:33–60CrossRefPubMedGoogle Scholar
  21. 21.
    Magram J, Chada K, Costantini F (1985) Developmental regulation of a cloned adult beta-globin gene in transgenic mice. Nature 315:338–340CrossRefPubMedGoogle Scholar
  22. 22.
    Townes TM, Lingrel JB, Chen HY, Brinster RL, Palmiter RD (1985) Erythroid-specific expression of human beta-globin genes in transgenic mice. EMBO J 4:1715–1723PubMedPubMedCentralGoogle Scholar
  23. 23.
    Forrester WC, Takegawa S, Papayannopoulou T, Stamatoyannopoulos G, Groudine M (1987) Evidence for a locus activation region: the formation of developmentally stable hypersensitive sites in globin-expressing hybrids. Nucleic Acids Res 15:10159–10177CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Grosveld F, van Assendelft GB, Greaves DR, Kollias G (1987) Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell 51:975–985CrossRefPubMedGoogle Scholar
  25. 25.
    Strouboulis J, Dillon N, Grosveld F (1992) Developmental regulation of a complete 70-kb human beta-globin locus in transgenic mice. Genes Dev 6:1857–1864CrossRefPubMedGoogle Scholar
  26. 26.
    Porcu S, Kitamura M, Witkowska E, Zhang Z, Mutero A, Lin C, Chang J, Gaensler KM (1997) The human beta globin locus introduced by YAC transfer exhibits a specific and reproducible pattern of developmental regulation in transgenic mice. Blood 90:4602–4609PubMedGoogle Scholar
  27. 27.
    Peterson KR, Clegg CH, Navas PA, Norton EJ, Kimbrough TG, Stamatoyannopoulos G (1996) Effect of deletion of 5′HS3 or 5′HS2 of the human beta-globin locus control region on the developmental regulation of globin gene expression in beta-globin locus yeast artificial chromosome transgenic mice. Proc Natl Acad Sci U S A 93:6605–6609CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Fujiwara Y, Browne CP, Cunniff K, Goff SC, Orkin SH (1996) Arrested development of embryonic red cell precursors in mouse embryos lacking transcription factor GATA-1. Proc Natl Acad Sci U S A 93:12355–12358CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Perkins AC, Sharpe AH, Orkin SH (1995) Lethal beta-thalassaemia in mice lacking the erythroid CACCC-transcription factor EKLF. Nature 375:318–322CrossRefPubMedGoogle Scholar
  30. 30.
    Nuez B, Michalovich D, Bygrave A, Ploemacher R, Grosveld F (1995) Defective haematopoiesis in fetal liver resulting from inactivation of the EKLF gene. Nature 375:316–318CrossRefPubMedGoogle Scholar
  31. 31.
    Fabry ME, Costantini F, Pachnis A, Suzuka SM, Bank N, Aynedjian HS, Factor SM, Nagel RL (1992) High expression of human beta S- and alpha-globins in transgenic mice: erythrocyte abnormalities, organ damage, and the effect of hypoxia. Proc Natl Acad Sci U S A 89:12155–12159CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Trudel M, Saadane N, Garel MC, Bardakdjian-Michau J, Blouquit Y, Guerquin-Kern JL, Rouyer-Fessard P, Vidaud D, Pachnis A, Romeo PH (1991) Towards a transgenic mouse model of sickle cell disease: hemoglobin SAD. EMBO J 10:3157–3165PubMedPubMedCentralGoogle Scholar
  33. 33.
    Ryan TM, Townes TM, Reilly MP, Asakura T, Palmiter RD, Brinster RL, Behringer RR (1990) Human sickle hemoglobin in transgenic mice. Science 247:566–568CrossRefPubMedGoogle Scholar
  34. 34.
    Greaves DR, Fraser P, Vidal MA, Hedges MJ, Ropers D, Luzzatto L, Grosveld F (1990) A transgenic mouse model of sickle cell disorder. Nature 343:183–185CrossRefPubMedGoogle Scholar
  35. 35.
    Rubin EM, Witkowska HE, Spangler E, Curtin P, Lubin BH, Mohandas N, Clift SM (1991) Hypoxia-induced in vivo sickling of transgenic mouse red cells. J Clin Invest 87:639–647CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Weiss MJ, Yu C, Orkin SH (1997) Erythroid-cell-specific properties of transcription factor GATA-1 revealed by phenotypic rescue of a gene-targeted cell line. Mol Cell Biol 17:1642–1651CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Coghill E, Eccleston S, Fox V, Cerruti L, Brown C, Cunningham J, Jane S, Perkins A (2001) Erythroid Krüppel-like factor (EKLF) coordinates erythroid cell proliferation and hemoglobinization in cell lines derived from EKLF null mice. Blood 97:1861–1868CrossRefPubMedGoogle Scholar
  38. 38.
    Blau CA, Barbas CF III, Bomhoff AL, Neades R, Yan J, Navas PA, Peterson KR (2005) {gamma}-Globin gene expression in chemical inducer of dimerization (CID)-dependent multipotential cells established from human {beta}-globin locus yeast artificial chromosome ({beta}-YAC) transgenic mice. J Biol Chem 280:36642–36647CrossRefPubMedGoogle Scholar
  39. 39.
    Fibach E, Manor D, Oppenheim A, Rachmilewitz EA (1989) Proliferation and maturation of human erythroid progenitors in liquid culture. Blood 73:100–103PubMedGoogle Scholar
  40. 40.
    Migliaccio G, Di Pietro R, di Giacomo V, Di Baldassarre A, Migliaccio AR, Maccioni L, Galanello R, Papayannopoulou T (2002) In vitro mass production of human erythroid cells from the blood of normal donors and of thalassemic patients. Blood Cells Mol Dis 28:169–180CrossRefPubMedGoogle Scholar
  41. 41.
    Gnanapragasam MN, Scarsdale JN, Amaya ML, Webb HD, Desai MA, Walavalkar NM, Wang SZ, Zu ZS, Ginder GD, Williams DC Jr (2011) p66Alpha-MBD2 coiled-coil interaction and recruitment of Mi-2 are critical for globin gene silencing by the MBD2-NuRD complex. Proc Natl Acad Sci U S A 108:7487–7492CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Amaya M, Desai M, Gnanapragasam MN, Wang SZ, Zu ZS, Williams DC Jr, Ginder GD (2013) Mi2beta-mediated silencing of the fetal gamma-globin gene in adult erythroid cells. Blood 121:3493–3501CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Vinjamur DS, Alhashem YN, Mohamad SF, Amin P, Williams DC Jr, Lloyd JA (2016) Krüppel-like transcription factor KLF1 is required for optimal gamma- and beta-globin expression in human fetal erythroblasts. PLoS One 11:e0146802CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Zhang J, Socolovsky M, Gross AW, Lodish HF (2003) Role of Ras signaling in erythroid differentiation of mouse fetal liver cells: functional analysis by a flow cytometry-based novel culture system. Blood 102:3938–3946CrossRefPubMedGoogle Scholar
  45. 45.
    Socolovsky M, Nam H, Fleming MD, Haase VH, Brugnara C, Lodish HF (2001) Ineffective erythropoiesis in Stat5a(-/-)5b(-/-) mice due to decreased survival of early erythroblasts. Blood 98:3261–3273CrossRefPubMedGoogle Scholar
  46. 46.
    Hu J, Liu J, Xue F, Halverson G, Reid M, Guo A, Chen L, Raza A, Galili N, Jaffray J, Lane J, Chasis JA, Taylor N, Mohandas N, An X (2013) Isolation and functional characterization of human erythroblasts at distinct stages: implications for understanding of normal and disordered erythropoiesis in vivo. Blood 121:3246–3253CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Department of Human and Molecular GeneticsVirginia Commonwealth UniversityRichmondUSA
  2. 2.Massey Cancer CenterVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations