Biological Testing and Toxicity Bioassays in Biodegradation: Toward Better Process Control

Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

The main purpose of bioremediation processes is to eliminate or even to reduce the risk of the toxic pollutants to reach safe and acceptable limits. Although environmental pollutants have complex nature and composition, most of the performed studies reported the application of methods for biodegradation of pollutants and xenobiotics in environment, especially wastewater, as a black box without considering sequestered risks. In this sense, chemical analysis alone is not sufficient for complete assessment of water quality while biological toxicity assays can estimate the effect of wastewater on the biota and assess the actual direct and sequestered environmental risks. This was the main driving force to teamwork in our lab to adopt, develop, and optimize biological testing methods and bioassays for better process control and real monitoring of the bioremediation efficiency. Several methods and bioassays were used such as BOD5 and algal toxicity (to assess the degree of wastewater toxicity), Artemia toxicity (to assess impact on the aquatic creatures), phytotoxicity (to assess the impact on terrestrial plants). Also endocrine disruptors’ assays and cytotoxicity (to assess the impact on mammalians and humans) were optimized. The authors discuss and transfer the knowledge and the step by step experience gained with these methods and bioassays. Moreover, this chapter elaborates all necessary practical tricks and precautions required to achieve accurate and reproducible measurements.

Key words

Artemia Phytotoxicity Cytotoxicity Microalgae BOD Toxicity Endocrine disruptors Pollutants Biodegradation and bioanalysis 

References

  1. 1.
    Young JC, Mcdermott GN, Jenkins D (1981) Alterations in the BOD procedure for the 15th edition of standard methods for the examination of water and wastewater. J Water Pollut Control Fed 53:1253Google Scholar
  2. 2.
    Essam T, Zilouei H, Amin MA et al (2006) Sequential UV-biological degradation of chlorophenols. Chemosphere 63:277–284CrossRefGoogle Scholar
  3. 3.
    Essam T, Amin MA, El Tayeb O et al (2007) Solar-based detoxification of phenol and p-nitrophenol by sequential TiO2 photocatalysis and photosynthetically aerated biological treatment. Water Res 41:1697–1704CrossRefPubMedGoogle Scholar
  4. 4.
    Radix P, Leonard M, Papantoniou C et al (2000) Comparison of four chronic toxicity tests using algae, bacteria, and invertebrates assessed with sixteen chemicals. Ecotoxicol Environ Saf 47:186–194CrossRefPubMedGoogle Scholar
  5. 5.
    Su Y, Mennerich A, Urban B (2011) Municipal wastewater treatment and biomass accumulation with a wastewater-born and settleable algal-bacterial culture. Water Res 45:3351–3358CrossRefPubMedGoogle Scholar
  6. 6.
    Rakaiby ME, Essam T, Hashem A (2012) Isolation and characterization of relevant algal and bacterial strains from Egyptian environment for potential use in photosynthetically aerated wastewater treatment. J Bioremed Biodegr S8:001Google Scholar
  7. 7.
    Ismail MM, Essam TM, Ragab YM et al (2016) Biodegradation of ketoprofen using a microalgal–bacterial consortium. Biotechnol Lett 38:1493–1502CrossRefPubMedGoogle Scholar
  8. 8.
    Nyholm N, Kallqvist T (1989) Review: methods for growth inhibition toxicity tests with freshwater algae. Environ Toxicol Chem 8:689–703CrossRefGoogle Scholar
  9. 9.
    Essam T, Rakaiby ME, Hashem A (2013) Photosynthetic based algal-bacterial combined treatment of mixtures of organic pollutants and CO2 mitigation in a continuous photobioreactor. World J Microbiol Biotechnol 29:969–974CrossRefPubMedGoogle Scholar
  10. 10.
    Chen X, Goh QY, Tan W et al (2011) Lumostatic strategy for microalgae cultivation utilizing image analysis and chlorophyll a content as design parameters. Bioresour Technol 102:6005–6012CrossRefPubMedGoogle Scholar
  11. 11.
    Ates M, Daniels J, Arslan Z et al (2013) Effects of aqueous suspensions of titanium dioxide nanoparticles on Artemia salina: assessment of nanoparticle aggregation, accumulation, and toxicity. Environ Monit Assess 185:3339–3348CrossRefPubMedGoogle Scholar
  12. 12.
    Xiao Y, Araujo CD, Sze CC et al (2015) Toxicity measurement in biological wastewater treatment processes: a review. J Hazard Mater 286:15–29CrossRefPubMedGoogle Scholar
  13. 13.
    Barahona MV, Sánchez-Fortún S (1999) Toxicity of carbamates to the brine shrimp Artemia salina and the effect of atropine, BW284c51, iso-OMPA and 2-PAM on carbaryl toxicity. Environ Pollut 104:469–476CrossRefGoogle Scholar
  14. 14.
    Brix KV, Gerdes RM, Adams WJ et al (2006) Effects of copper, cadmium, and zinc on the hatching success of brine shrimp (Artemia franciscana). Arch Environ Contam Toxicol 51:580–583CrossRefPubMedGoogle Scholar
  15. 15.
    Jaki B, Orjala J, Bürgi HR et al (1999) Biological screening of cyanobacteria for antimicrobial and Molluscicidal activity, brine shrimp lethality, and cytotoxicity. Pharm Biol 37:138–143CrossRefGoogle Scholar
  16. 16.
    Carballo JL, Hernandez-Inda ZL, Perez P et al (2002) A comparison between two brine shrimp assays to detect in vitro cytotoxicity in marine natural products. BMC Biotechnol 2:17–21CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Caldwell GS, Bentley MG, Olive PJ (2003) The use of a brine shrimp (Artemia salina) bioassay to assess the toxicity of diatom extracts and short chain aldehydes. Toxicon 42:301–306CrossRefPubMedGoogle Scholar
  18. 18.
    Sorgeloos P, Remiche-Van Der Wielen C, Persoone G et al (1978) The use of Artemia nauplii for toxicity tests – a critical analysis. Ecotoxicol Environ Saf 2:249–255CrossRefPubMedGoogle Scholar
  19. 19.
    Nunes BS, Carvalho FD, Guilhermino LM et al (2006) Use of the genus Artemia in ecotoxicity testing. Environ Pollut 144:453–462CrossRefPubMedGoogle Scholar
  20. 20.
    Tamer E (2006) Solar-based physicochemical-biological processes for the treatment of toxic and recalcitrant effluents. Dissertation, University of Lund, LundGoogle Scholar
  21. 21.
    Wang X, Sun C, Gao S et al (2001) Validation of germination rate and root elongation as indicator to assess phytotoxicity with Cucumis sativus. Chemosphere 44:1711–1721CrossRefPubMedGoogle Scholar
  22. 22.
    Cruz JM, Lopes PRM, Montagnolli RN (2013) Phytotoxicity of soil contaminated with petroleum derivatives and biodiesel. Ecotoxicol Environ Contam 8:49–54Google Scholar
  23. 23.
    Sobrero MC, Ronco A (2004) Ensayo de toxicidad aguda con semillas de lechuga (Lactuca sativa L.) In: Morales GC (ed) Ensayos Toxicológicos y Métodos de Evaluación de Calidad de Agua: estandarización, intercalibración, resultados y aplicaciones. IMTA, MexicoGoogle Scholar
  24. 24.
    Samir R, Essam T, Ragab Y et al (2015) Enhanced photocatalytic–biological degradation of 2,4 dichlorophenoxyacetic acid. Bull Fac Pharm Cairo Univ. doi: 10.1016/j.bfopcu.2015.03.002
  25. 25.
    Cruz JM, Tamada IS, Lopes PRM et al (2014) Biodegradation and phytotoxicity of biodiesel, diesel, and petroleum in soil. Water Air Soil Pollut 225:1962CrossRefGoogle Scholar
  26. 26.
    Vanroyem V (2004) Assessment of phytotoxicity test suitable for use in cold climate. Master Thesis final report, University of Lund, LundGoogle Scholar
  27. 27.
    Gelbke HP, Kayser M, Poole A (2004) OECD test strategies and methods for endocrine disruptors. J Toxicol 205:17–25CrossRefGoogle Scholar
  28. 28.
    Guillette LJ, Crain DA, Gunderson MP et al (2000) Alligators and endocrine disrupting contaminants: a current perspective. Am Zool 40:438Google Scholar
  29. 29.
    Rodgers-Gray TP, Jobling S, Kelly C et al (2001) Exposure of juvenile roach (Rutilus Rutilus) to treated sewage effluent induces dose-dependent and persistent disruption in gonadal duct development. Environ Sci Technol 35:462–470CrossRefPubMedGoogle Scholar
  30. 30.
    Balsiger HA, de la Torre R, Lee WY et al (2010) A four-hour yeast bioassay for the direct measure of estrogenic activity in wastewater without sample extraction, concentration or sterilization. Sci Total Environ 408:1422–1429CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ma M, Li J, Wang Z (2005) Assessing the detoxication efficiencies of wastewater treatment processes using a battery of bioassays/biomarkers. Arch Environ Contam Toxicol 49:480–487CrossRefPubMedGoogle Scholar
  32. 32.
    Li N, Jiang W, Rao K et al (2011) Estrogen-related receptor gamma disruption of source water and drinking water treatment processes extracts. J Environ Sci (China) 23:301–306CrossRefGoogle Scholar
  33. 33.
    Garcia-Reyero N, Grau E, Castillo M et al (2001) Monitoring of endocrine disruptors in surface waters by the yeast recombinant assay. Environ Toxicol Chem 20:1152–1158CrossRefPubMedGoogle Scholar
  34. 34.
    Zegura B, Heath E, Cernosa A et al (2009) Combination of in vitro bioassays for the determination of cytotoxic and genotoxic potential of wastewater, surface water and drinking water samples. Chemosphere 75:1453–1460CrossRefPubMedGoogle Scholar
  35. 35.
    Trintinaglia L, Bianchi E, Silva LB et al (2015) Cytotoxicity assays as tools to assess water quality in the Sinos River basin. Braz J Biol 75:75–80CrossRefPubMedGoogle Scholar
  36. 36.
    Keepers YP, Pizao PE, Peters GJ et al (1991) Comparison of the sulforhodamine B protein and tetrazolium (MTT) assays for in vitro chemosensitivity testing. Eur J Cancer 27:897–900CrossRefPubMedGoogle Scholar
  37. 37.
    Ismail MM, Essam TM, Mohamed AF et al (2012) Screening for the antimicrobial activities of alcoholic and aqueous extracts of some common spices in Egypt. Int J Microbiol Res 3:200–207Google Scholar
  38. 38.
    Van Tonder A, Joubert AM, Cromarty AD (2015) Limitations of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay when compared to three commonly used cell enumeration assays. BMC Res Notes 8:47CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Skehan P, Storeng R, Scudiero D (1990) New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst 82:1107–1112CrossRefPubMedGoogle Scholar
  40. 40.
    Vichai V, Kirtikara K (2006) Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc 1:1112–1116CrossRefPubMedGoogle Scholar
  41. 41.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefPubMedGoogle Scholar
  42. 42.
    Monks A, Scudiero D, Skehan P et al (1991) Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J Natl Cancer Inst 83:757–766CrossRefPubMedGoogle Scholar
  43. 43.
    Suranie P, Rialet P, Carlos CB (2013) A cell viability assay to determine the cytotoxic effects of water contaminated by microbes. J Microbiol Methods. doi: 10.1590/sajs.2013/20120069
  44. 44.
    Garcia J, Mujeriego R, Hernandez-Marine M (2000) High rate algal pond operating strategies for urban wastewater nitrogen removal. J Appl Phycol 12:331–339CrossRefGoogle Scholar
  45. 45.
    Olguin EJ (2003) Phycoremediation: key issues for cost-effective nutrient removal processes. Biotechnol Adv 22:81–91CrossRefPubMedGoogle Scholar
  46. 46.
    Ismail MM, Essam TM, Ragab YM, El-Sayed AB, Mourad FE (2017) Remediation of a mixture of analgesics in a stirred-tank photobioreactor using microalgal-bacterial consortium coupled with attempt to valorize the harvested biomass. Bioresour Technol 232:364–371CrossRefPubMedGoogle Scholar
  47. 47.
    Su Y, Mennerich A, Urban B (2012) Coupled nutrient removal and biomass production with mixed algal culture: impact of biotic and abiotic factors. Bioresour Technol 118:469–476CrossRefPubMedGoogle Scholar
  48. 48.
    Lee J, Cho D-H, Ramanan R et al (2013) Microalgae associated bacteria play a key role in the flocculation of Chlorella vulgaris. Bioresour Technol 131:195–201CrossRefPubMedGoogle Scholar
  49. 49.
    Powell RJ, Hill RT (2014) Mechanism of algal aggregation by Bacillus sp. strain RP1137. Appl Environ Microbiol 80:4042–4050CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Guieysse B, Border X, Muñoz R et al (2002) Influence of the initial composition of algal–bacterial microcosms on the degradation of salicylate in a fed-batch culture. Biotechnol Lett 24:531–538CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Maha M. Ismail
    • 1
  • Mariam Hassan
    • 1
  • Tamer M. Essam
    • 1
  1. 1.Department of Microbiology and Immunology, Faculty of PharmacyCairo UniversityCairoEgypt

Personalised recommendations