Ecotoxicological Characterization of Surfactants and Mixtures of Them

  • Francisco Ríos
  • Alejandro Fernández-Arteaga
  • Manuela Lechuga
  • Mercedes Fernández-Serrano
Part of the Methods in Pharmacology and Toxicology book series (MIPT)


Surfactants are a wide group of chemical compounds, which have a large number of applications in agricultural, industrial, commercial, and household applications. Due to their extensive applicability, surfactants are usually found not only in wastewaters but also in natural waters at significant concentrations. Depending on the concentration in the aquatic environment, surfactants can be toxic for some living microorganisms. The adsorption of surfactants causes the depolarization of the cellular membranes and can cause acute and chronic effects on sensitive organisms through different nonspecific modes of action. Therefore, an ecotoxicological study of surfactants is needed to establish safe concentrations for the environment and compare with predicted or measured environmental concentrations. This chapter will gather the methods used to determine the ecotoxicity of surfactants as well as it will address the potential toxic effects of surfactants (including anionic, nonionic, and cationic) on representative organisms from different trophic levels. Furthermore, there is a growing interest in the study of the environmental properties of surfactant mixtures due to their co-occurrence in wastewaters and natural environments; therefore, this chapter will also address the synergistic/antagonistic effects on the toxicity of mixtures of anionic and nonionic surfactants. Finally, some challenges in the analytical procedures are fronted.

Key words

Surfactants Toxicity Mixtures Aquatic environment 


  1. 1.
    Csherháti T, Forgács E, Oros G (2002) Biological activity and environmental impact of anionic surfactants. Environ Int 28:337–348CrossRefGoogle Scholar
  2. 2.
    European Committee of Organic Surfactants and their Intermediates (2014) CESIO surfactants statistics for Western Europe. European Committee of Organic Surfactants and their Intermediates, BrusselsGoogle Scholar
  3. 3.
    Torres JA (2012) Sulfonation/sulfation processing technology for anionic surfactant manufacture advances in chemical engineering. In: Nawaz Z (ed) Advances in chemical engineering. In Tech, Rijeka, pp 269–294Google Scholar
  4. 4.
    Hedreul C, Frens G (2001) Foam stability. Colloids Surf A Physicochem Eng Asp 186(1-2):73–82CrossRefGoogle Scholar
  5. 5.
    Kunieda H, Ozawa K, Aramaki K et al (1998) Formation of microemulsions in mixed ionic-non-ionic surfactants systems. Langmuir 14(2):260–263CrossRefGoogle Scholar
  6. 6.
    Solans C, Pinazo A, Caldero G et al (2001) Highly concentrated emulsions as novel reaction media. Colloids Surf A Physicochem Eng Asp 176(1):101–108CrossRefGoogle Scholar
  7. 7.
    Forgiarini A, Esquena J, González C et al (2002) The relation between phase behavior and formation of narrow size distribution W/O emulsions. J Dispers Sci Technol 23(1-3):209–217CrossRefGoogle Scholar
  8. 8.
    Ying GG (2006) Fate, behaviour and effects of surfactants and their degradation products in the environment. Environ Int 32:417–431CrossRefPubMedGoogle Scholar
  9. 9.
    Sandbacka M, Christianson I, Isomaa B (2000) The acute toxicity of surfactants on fish cells, Daphnia magna and fish – a comparative study. Toxicol In Vitro 14:61–68CrossRefPubMedGoogle Scholar
  10. 10.
    Deleu M, Paquot M (2004) From renewable vegetables resources to microorganisms: new trends in surfactants. C R Chim 7(6):641–646CrossRefGoogle Scholar
  11. 11.
    Council Directive of 27th June 1967 on the approximation of laws, regulations and administrative provisions relating to the classification, packaging and labeling of dangerous substances (67/548/EEC)Google Scholar
  12. 12.
    Council Directive 73/404/EEC on the approximation of the laws of the Member States relating to detergents (DO L 347 de 17/12/1973)Google Scholar
  13. 13.
    Council Directive 73/405/EEC on the approximation of the laws of the Member States relating to methods for testing the biodegradability of anionic surfactants (DO L 109, 17/12/1973)Google Scholar
  14. 14.
    Council Directive 82/243/EEC on the approximation of the laws of the Member States relating to methods for testing the biodegradability of anionic surfactants. (DO L 109/18,1982)Google Scholar
  15. 15.
    Council Directive 82/242/EEC on the approximation of the laws of the Member States relating to methods for testing the biodegradability of non-ionic surfactants. DO L 109/1, 1982Google Scholar
  16. 16.
    Regulation (EC) No 648/2004 of the European Parliament and of the Council of 31 March 2004 on detergents. (DO L 104, 08.04.2004)Google Scholar
  17. 17.
    Council Directive of 10th March 1986 amending for the second time Directive 73/404/EEC on the approximation of the laws of the Member States relating to detergents (86/94/EEC)Google Scholar
  18. 18.
    Commission Recommendation of 13 September 1989 for the labelling of detergents and cleaning products (89/542/EEC)Google Scholar
  19. 19.
    Boiteux JP (1984) Dosage colorimetrique d’agents de surface amphoteres et etude du compartement d’une alkyl amido betaine en milieu natural. La Rivista italiana delle sostanze grasse 61:491–495Google Scholar
  20. 20.
    Regulation CE n° 1272, (2008) Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on the classification, labelling and packaging of substances and mixtures. (DO L 353, 31.12.2008)Google Scholar
  21. 21.
    Regulation CE n° 790, (2009) Commission Regulation (EC) No 790/2009 of 10 August 2009 amending, for the purposes of its adaptation to technical and scientific progress, Regulation (EC) No 1272/2008 of the European Parliament and of the Council on Classification, labelling and packaging of substances and mixtures. (DO L 235, 05.09.2009)Google Scholar
  22. 22.
    Wong DCL, Dorn PB, Chai EY (1997) Acute toxicity and structure-activity relationships of ninealcohol ethoxylate surfactants to fathead minnow and Daphnia magna. Environ Toxicol Chem 16:1970–1976Google Scholar
  23. 23.
    Kimerle RA, Swisher RD (1977) Reduction of aquatic toxicity of linear alkylbenzne sulfonate (LAS) by biodegradation. Water Res 11:31–37CrossRefGoogle Scholar
  24. 24.
    Vandoni M, Goldberg L (1973) Behavior of surfactants in agricultural soil. La Rivista italiana delle sostanze grasse 50:185–192Google Scholar
  25. 25.
    Ahel M, Giger M (1985) Determination of alkylphenols and alkylphenol mono and diethoxylates in environmental samples by high perfomance liquid chromatography. Anal Chem 57:1557–1583Google Scholar
  26. 26.
    García M, Ribosa I, González J et al (1994) Study of the environmental impact of ethoxylated non-ionic surfactants. In: Abstract of the 25th CED annual conferences. Barcelona, pp 155–169Google Scholar
  27. 27.
    Sarma SS, Nandini S (2006) Review of recent ecotoxicological studies on cladocerans. J Environ Sci Health B 41:1417–1430. doi: 10.1080/03601230600964316 CrossRefPubMedGoogle Scholar
  28. 28.
    Lechuga M, Fernández-Serrano M, Jurado E et al (2016) Acute toxicity of anionic and non-ionic surfactants to aquatic organisms. Ecotoxicol Environ Saf 125:1–8. doi: 10.1016/j.ecoenv.2015.11.027 CrossRefPubMedGoogle Scholar
  29. 29.
    Balch GC, Evans RD (1999) A recirculating flow-through system for toxicity testing with stream-dwelling aquatic benthic invertebrates. Aquat Toxicol 45(4):241–251. doi: 10.1016/S0166-445X(98)00106-4 CrossRefGoogle Scholar
  30. 30.
    Person L (2012) Screening methods for aquatic toxicity of surfactants. Master of Science Thesis in the Master Degree Programme Materials and Nanotechnology. Chalmers University of TechnologyGoogle Scholar
  31. 31.
    Agrawal A, Gopal K (2013) General principles of toxicity and its applications. In: Agrawal A, Gopal K (eds) Biomonitoring of water and waste water. Springer, India, pp 101–108. doi: 10.1007/978-81-322-0864-8_10 CrossRefGoogle Scholar
  32. 32.
    UNE-EN ISO11348-2, 2009.Water quality. Determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test)-Part2: Method using liquid-dried bacteria (ISO11348-2:2007)Google Scholar
  33. 33.
    UNE-EN ISO 10712, 1996. Water quality. Pseudomonas Putida growth inhibition test (Pseudomonas cell multiplication inhibition test). (ISO 10712:1995)Google Scholar
  34. 34.
    OECD Guidelines for the Testing of Chemicals, Section 2: Effects on Biotic Systems. Test No. 201: Freshwater Alga and Cyanobacteria, Growth Inhibition Test. 1991Google Scholar
  35. 35.
    UNE-EN ISO10253, 2007. Water quality – Marine algal growth inhibition test with Skeletonema costatum and Phaeodactylum tricornutum (ISO 10253:2006)Google Scholar
  36. 36.
    OECD Guidelines for the Testing of Chemicals, Section 2: Effects on Biotic Systems Test No. 221: Lemna sp. Growth Inhibition Test. 2006Google Scholar
  37. 37.
    OECD Guidelines for the Testing of Chemicals, Section 2: Effects on Biotic Systems. Test No. 202: Daphnia sp. Acute Immobilisation Test. 2004Google Scholar
  38. 38.
    OECD Guidelines for the Testing of Chemicals, Section 2: Effects on Biotic Systems. Test No. 211: Daphnia magna Reproduction Test. 2012Google Scholar
  39. 39.
    Artoxkit M (1990) Artemia toxicity screening test for estuarine and marine waters. Standard Operational ProcedureGoogle Scholar
  40. 40.
    Liwarska-Bizukojc E, Miksch K, Malachowska-Jutsz A et al (2005) Acute toxicity and genotoxicity of five selected anionic and non-ionic surfactants. Chemosphere 58:1249–1253. doi: 10.1016/j.chemosphere.2004.10.031 CrossRefPubMedGoogle Scholar
  41. 41.
    OECD Guidelines for the Testing of Chemicals, Section 2: Effects on Biotic Systems. Test No. 203: Fish, Acute Toxicity Test. 1992Google Scholar
  42. 42.
    Toumi H, Boumaiza M, Millet M et al (2015) Investigation of differences in sensitivity between 3 strains of Daphnia magna (crustacean Cladocera) exposed to malathion (organophosphorous pesticide). J Environ Sci Health B 50:34–44. doi: 10.1080/03601234.2015.965617 CrossRefPubMedGoogle Scholar
  43. 43.
    Pavlić Z, Vidaković-Cifrek Z, Puntarić D (2005) Toxicity of surfactants to green microalgae Pseudokirchneriella subcapitata and Scenedesmus subspicatus and to marine diatoms Phaeodactylum tricornutum and Skeletonema costatum. Chemosphere 61:1061–1068. doi: 10.1016/j.chemosphere.2005.03.051 CrossRefPubMedGoogle Scholar
  44. 44.
    Jurado E, Fernández-Serrano M, Lechuga M et al (2012) Environmental impact of ether carboxylic derivative surfactants. J Surfactant Deterg 15:1–7. doi: 10.1007/s11743-011-1278-z CrossRefGoogle Scholar
  45. 45.
    Jurado E, Fernández-Serrano M, Núñez-Olea J et al (2012) Acute toxicity of alkylpolyglucosides to Vibrio fischeri, Daphnia magna and microalgae: a comparative study. Bull Environ Contam Toxicol 88:290–295. doi: 10.1007/s00128-011-0479-5 CrossRefPubMedGoogle Scholar
  46. 46.
    Lechuga M, Fernández-Arteaga A, Fernández-Serrano M et al (2013) Ozonation of anionic and non-ionic surfactants in aqueous solutions: impact on aquatic toxicity. J Surfactant Deterg 16:779–784. doi: 10.1007/s11743-013-1464-2 CrossRefGoogle Scholar
  47. 47.
    Mousavi ZE, Condell O, Fanning S et al (2016) Quaternary ammonium compounds (QACS) induced inactivation of pseudomonas spp.: effect of material surface. Food Bioprod Process 98:71–78. doi: 10.1016/j.fbp.2015.12.009 CrossRefGoogle Scholar
  48. 48.
    Jackson M, Eadsforth C, Schowanek D et al (2016) Comprehensive review of several surfactants in marine environments: fate and ecotoxicity. Environ Toxicol Chem 35:1077–1086. doi: 10.1002/etc.3297 CrossRefPubMedGoogle Scholar
  49. 49.
    Jennings VLK, Rayner-Brandes MH, Bird DJ (2001) Assessing chemical toxicity with the bioluminescent photobacterium (Vibrio fischeri): a comparison of three commercial systems. Water Res 35:3448–3456. doi: 10.1016/S0043-1354(01)00067-7 CrossRefPubMedGoogle Scholar
  50. 50.
    Parvez S, Venkataraman C, Mukherji S (2006) A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environ Int 32:265–268. doi: 10.1016/j.envint.2005.08.022 CrossRefPubMedGoogle Scholar
  51. 51.
    Braunbeck T, Kais B, Lammer E et al (2015) The fish embryo test (FET): origin, applications, and future. Environ Sci Pollut Res Int 22(21):16247–16261. doi: 10.1007/s11356-014-3814-7 CrossRefPubMedGoogle Scholar
  52. 52.
    Regulation (EC) No 1907/2006 of the European Parliament and of the council of 18 December 2006 concerning the registration, evaluation, authorisation and restriction of chemicals (REACH). Off J EU 396:1–849Google Scholar
  53. 53.
    Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products. Off J EU 342:59–209Google Scholar
  54. 54.
    Roberts DW, Costello J (2003) QSAR and mechanism of action for aquatic toxicity of cationic surfactants. QSAR Comb Sci 22:220–225. doi: 10.1002/qsar.200390015 CrossRefGoogle Scholar
  55. 55.
    Roberts DW, Marshall SJ (1995) Application of hydrophobicity parameters to prediction of the acute toxicity of commercial surfactant mixtures. SAR QSAR Environ Res 4:167–176CrossRefGoogle Scholar
  56. 56.
    Aloui F, Kchaou S, Sayadi S (2009) Physicochemical treatments of anionic surfactants wastewater: effect on aerobic biodegradability. J Hazard Mater 164:353–359CrossRefPubMedGoogle Scholar
  57. 57.
    Yu Y, Zhao J, Bayly A (2008) Development of surfactants and builders in detergent formulations. Chin J Chem Eng 16:517–527CrossRefGoogle Scholar
  58. 58.
    Roberts DW (1991) QSAR issues in aquatic toxicity of surfactants. Sci Total Environ 109(110):557–568CrossRefPubMedGoogle Scholar
  59. 59.
    Jurado E, Fernández-Serrano M, Núñez-Olea J et al (2009) Acute toxicity and relationship between metabolites and ecotoxicity during the biodegradation process of non-ionic surfactants: fatty-alcoholethoxylates, nonylphenol polyethoxylate and alkylpolyglucosides. Water Sci Technol 59:2351–2358CrossRefPubMedGoogle Scholar
  60. 60.
    Morrall DD, Belanger SE, Dunphy JC (2003) Acute and chronic aquatic toxicity structure activity relationships for alcohol ethoxylates. Ecotoxicol Environ Saf 56:381–389CrossRefPubMedGoogle Scholar
  61. 61.
    Fernández-Serrano M, Jurado E, Fernández-Arteaga A et al (2014) Ecotoxicological assessment of mixtures of ether carboxylic derivative and amine-oxide-based non-ionic surfactants on the aquatic environment. J Surfactant Deterg 17:1161–1168CrossRefGoogle Scholar
  62. 62.
    Farré M, García MJ, Tirapu L et al (2001) Wastewater toxicity screening of non-ionic surfactants by toxalerts and microtoxs bioluminescence inhibition assays. Anal Chim Acta 427:181–189CrossRefGoogle Scholar
  63. 63.
    García MT, Ribosa J, Campos E, Sanchez-Leal J (1997) Ecological properties of alkylglucosides. Chemosphere 35:545–556CrossRefGoogle Scholar
  64. 64.
    García MT, Campos E, Ribosa I (2007) Biodegradability and ecotoxicity of amine oxide based surfactants. Chemosphere 69(10):1574–1578. doi: 10.1016/j.chemosphere.2007.05.089 CrossRefPubMedGoogle Scholar
  65. 65.
    Naecz-Jawecki G, Grabinska-Sota E, Narkiewicz P (2003) The toxicity of cationic surfactants in four bioassays. Ecotoxicol Environ Saf 54:87–91CrossRefGoogle Scholar
  66. 66.
    Jing G, Zhou Z, Zhuo J (2012) Quantitative structure–activity relationship (QSAR) study of toxicity of quaternary ammonium compounds on Chlorella pyrenoidosa and Scenedesmus Quadricauda. Chemosphere 86:76–82CrossRefPubMedGoogle Scholar
  67. 67.
    Anoune N, Nouiri M, Berrah Y et al (2002) Critical micelle concentrations of different classes of surfactants: a quantitative structure property relationship study. J Surfactant Deterg 5:45–53CrossRefGoogle Scholar
  68. 68.
    Qiu J, Dai Y, Zhang XS et al (2013) QSAR modeling of toxicity of acyclic quaternary ammonium compounds on scenedesmus quadricauda using 2D and 3D descriptors. Bull Environ Contam Toxicol 91:83–88CrossRefPubMedGoogle Scholar
  69. 69.
    Tervo AJ, Nvroenen TH, Rönkkö T et al (2004) Comparing the quality and predictiveness between 3D QSAR models obtained from manual and automated alignment. J Chem Inf Comput Sci 44:807–816CrossRefPubMedGoogle Scholar
  70. 70.
    Hu RJ, Barbault F, Delamar M (2009) Receptor- and ligand-based 3D-QSAR study for a series of non-nucleoside HIV-1 reverse transcriptase inhibitors. Bioorg Med Chem 17:2400–2409CrossRefPubMedGoogle Scholar
  71. 71.
    Rosen MJ (1989) Surfactant and interfacial phenomena, 2nd edn. Wiley, New YorkGoogle Scholar
  72. 72.
    Werts KM, Grady BP (2011) Mixtures of non-ionic surfactants made from renewable resources with alkyl sulfates: comparison of headgroups. J Surfactant Deterg 14:77–84CrossRefGoogle Scholar
  73. 73.
    Kume G, Gallotti M, Nuges G (2008) Review on anionic/cationic surfactant mixtures. J Surfactant Deterg 11:1–11CrossRefGoogle Scholar
  74. 74.
    Atkinson SF, Johnson DR, Venables BJ et al (2009) Use of watershed factors to predict consumer surfactant risk, water quality, and habitat quality in the upper Trinity River, Texas. Sci Total Environ 407:4028–4037CrossRefPubMedGoogle Scholar
  75. 75.
    Hisano N, Oya M (2010) Effects of surface activity on aquatic toxicity of binary surfactant mixtures. J Oleo Sci 59:589–599. doi: 10.5650/jos.59.589 CrossRefPubMedGoogle Scholar
  76. 76.
    Slye JL, Kennedy JR, Johnson DR et al (2011) Relationships between benthic macroinvertebrate community structure and geospatial habitat, in-stream water chemistry, and surfactants in the effluent-dominated Trinity River, Texas, USA. Environ Toxicol Chem 30:1127–1138. doi: 10.1002/etc.483 CrossRefPubMedGoogle Scholar
  77. 77.
    Zhou Q, Rosen MJ (2003) Molecular interactions of surfactants in mixed monolayers at the air/aqueous solution interface and in mixed micelles in aqueous media: the regular solution approach. Langmuir 19:4555–4562CrossRefGoogle Scholar
  78. 78.
    Pedrazzani R, Ceretti E, Zerbini I et al (2012) Biodegradability, toxicity and mutagenicity of detergents: integrated experimental evaluations. Ecotoxicol Environ Saf 84(1):274–281. doi: 10.1016/j.ecoenv.2012.07.023 CrossRefPubMedGoogle Scholar
  79. 79.
    Azizullah A, Richter P, Häder DP (2011) Toxicity assessment of a common laundry detergent using the fresh water flagellate Euglena gracilis. Chemosphere 84:1392–1400CrossRefPubMedGoogle Scholar
  80. 80.
    Aizdaicher NA, Markina Z (2006) Toxic effects of detergent on the alga Plagioselmis prolonga (Cryptophyta). Russ J Mar Biol 32:45–49CrossRefGoogle Scholar
  81. 81.
    Al-Soufi W, Piñeiro L, Novo M (2012) A model for monomer and micellar concentrations in surfactant solutions: application to conductivity, NMR, diffusion, and surface tension data. J Colloid Interface Sci 370(1):102–110. doi: 10.1016/j.jcis.2011.12.037 CrossRefPubMedGoogle Scholar
  82. 82.
    Turro NJ, Yekta A (1978) Luminescent probes for detergent solutions. A simple procedure for determination of the mean aggregation number of micelles. J Am Chem Soc 100(18):5951–5952CrossRefGoogle Scholar
  83. 83.
    Freire S, Bordello J, Granadero D et al (2010) Role of electrostatic and hydrophobic forces in the interaction of ionic dyes with charged micelles. Photochem Photobiol Sci 9:687–696CrossRefPubMedGoogle Scholar
  84. 84.
    Patist A, BhagwatK SS, Penfield W (2010) On the measurement of critical micelle concentrations of pure and technical-grade non-ionic surfactants. J Surfactant Deterg 3(1):53–58. doi: 10.1007/s11743-000-0113-4 CrossRefGoogle Scholar
  85. 85.
    Mukerjee P, Mysels KJ (1971) Critical micelle concentrations of aqueous surfactant systems, vol NSRDS-NBS 36. US Government Printing Office, WashingtonGoogle Scholar
  86. 86.
    Gad EAM, Azzam EMS, Aiad I et al (2009) Molecular, surface, thermodynamic properties and biodegradability of non-ionic surfactants based on castor oil. Tenside Surfactants Deterg 46(5):272–278CrossRefGoogle Scholar
  87. 87.
    El-Azab WI, Aiad I, Azzam EMS et al (2010) Molecular, surface, and thermodynamic properties of non-ionic surfactants based on castor oil. J Dispersion Sci Technol 31(8):1150–1156CrossRefGoogle Scholar
  88. 88.
    Zgoła-Grześkowiak A, Grześkowiak T, Szymański A (2015) Biodegradation of nonylphenol monopropoxyethoxylates. J Surfactant Deterg 18:355–364. doi: 10.1007/s11743-014-1652-8 CrossRefGoogle Scholar
  89. 89.
    Berchter M, Meister J, Hammes C (1997) MALDI-TOF-MS: characterization of products based on renewable raw materials. Fett-Lipid 99:384–391CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Francisco Ríos
    • 1
  • Alejandro Fernández-Arteaga
    • 1
  • Manuela Lechuga
    • 1
  • Mercedes Fernández-Serrano
    • 1
  1. 1.Department of Chemical Engineering, Faculty of SciencesUniversity of GranadaGranadaSpain

Personalised recommendations