Bioassays Used to Assess the Efficacy of Biodegradation

  • Dânia E. C. Mazzeo
  • Matheus M. Roberto
  • Laís R. D. Sommaggio
  • Maria A. Marin-Morales
Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

Many variables are involved in bioremediation process. Therefore, all biodegradation processes must undergo by a sequential tracking, in all steps, to identify and certify the efficacy of intended detoxification. The evaluation of effectiveness by bioremediation process of environmental samples has been performed mainly through chemical analysis, neglecting their effects on biological environment. In order to achieve a full evaluation and a consistent efficacy by the bioremediation process in all stages, besides the chemical analyses, bioassays are needed to estimate the real effects of pollutants and their metabolites over the biota. Thus, this chapter brings information about the main bioassays currently used to assess the efficiency of biodegradation/bioremediation applied to environmental contaminants, based on examples, endpoints and protocols.

Key words

Bioremediation Degrading organisms Bacteria-based assays Higher plants Cultured mammal cell lines 

References

  1. 1.
    Sinha S, Chattopadhyay P, Pan I et al (2009) Microbial transformation of xenobiotics for environmental bioremediation. Afr J Biotechnol 8:6016–6027CrossRefGoogle Scholar
  2. 2.
    Kot-Wasik A (2004) The importance of degradation in the fate of selected organic compounds in the environment. Part I. General considerations. Pol J Environ Stud 13:607–616Google Scholar
  3. 3.
    Cesar RG, Egler SG, Polivanov H et al (2008) Biodisponibilidade de Metilmercúrio. Zinco e Cobre em Distintas Frações Granulométricas de Solo Contaminado Utilizando Oligoquetas da Espécie Eisenia andrei, Anuário do Instituto de Geociências - UFRJ 31:33–41Google Scholar
  4. 4.
    Hund K, Traunspurger W (1994) Ecotox-evaluation strategy for soil bioremediation exemplified for a PAH-contaminated site. Chemosphere 29:371–390CrossRefPubMedGoogle Scholar
  5. 5.
    Marwood TM, Knoke K, Yau K et al (1998) Comparison of toxicity detected by five bioassays during bioremediation of diesel fuel‐spiked soils. Environ Toxicol 13:117–126Google Scholar
  6. 6.
    Cesaro A, Belgiorno V, Guida M (2015) Compost from organic solid waste: quality assessment and European regulations for its sustainable use. Resour Conserv Recycl 94:72–79CrossRefGoogle Scholar
  7. 7.
    Moreira R, Sousa JP, Canhoto C (2008) Biological testing of a digested sewage sludge and derived composts. Bioresour Technol 99:8382–8389CrossRefPubMedGoogle Scholar
  8. 8.
    Pandard P, Devillers J, Charissou A-M et al (2006) Selecting a battery of bioassays for ecotoxicological characterization of wastes. Sci Total Environ 363:114–125CrossRefPubMedGoogle Scholar
  9. 9.
    Maila MP, Cloete TE (2005) The use of biological activities to monitor the removal of fuel contaminants—perspective for monitoring hydrocarbon contamination: a review. Int Biodeter Biodegr 55:1–8CrossRefGoogle Scholar
  10. 10.
    Knoke KL, Marwood TM, Cassidy MB et al (1999) A comparison of five bioassays to monitor toxicity during bioremediation of pentachlorophenol-contaminated soil. Water Air Soil Pollut 110:157–169CrossRefGoogle Scholar
  11. 11.
    Brusick D (1987) The principles of genetic toxicology. Plenum Press, New York, NYCrossRefGoogle Scholar
  12. 12.
    Płaza G, Nałęcz-Jawecki G, Ulfig K et al (2005) The application of bioassays as indicators of petroleum-contaminated soil remediation. Chemosphere 59:289–296CrossRefPubMedGoogle Scholar
  13. 13.
    Ferraz ERA, Umbuzeiro GA, de-Almeida G et al (2011) Differential toxicity of disperse red 1 and disperse red 13 in the Ames test, HepG2 cytotoxicity assay, and Daphnia acute toxicity test. Environ Toxicol 26:489–497CrossRefPubMedGoogle Scholar
  14. 14.
    McCann J, Choi E, Yamasaki E et al (1975) Detection of carcinogens as mutagens in the Salmonella/microsome test: assay of 300 chemicals. Proc Natl Acad Sci U S A 72:5135–5139CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kummrow F, Rech CM, Coimbrão CA et al (2003) Comparison of the mutagenic activity of XAD4 and blue rayon extracts of surface water and related drinking water samples. Mut Res Genet Toxicol Environ Mutagen 541:103–113CrossRefGoogle Scholar
  16. 16.
    Oliveira DP, Carneiro PA, Sakagami MK et al (2007) Chemical characterization of a dye processing plant effluent—identification of the mutagenic components. Mut Res Genet Toxicol Environ Mutagen 626:135–142CrossRefGoogle Scholar
  17. 17.
    Umbuzeiro GA, Vargas VMF (2003) Teste de mutagenicidade com Salmonella typhimurium (Teste de Ames) como indicador de carcinogenicidade em potencial para mamíferos. In: Ribeiro LR, Favero Salvadori DM, Marques EK (eds) Mutagênese ambiental. Editora da Ulbra, Canoas, RS, p 355Google Scholar
  18. 18.
    Jarvis AS, Honeycutt ME, McFarland VA et al (1996) A comparison of the Ames assay and Mutatox in assessing the mutagenic potential of contaminated dredged sediment. Ecotoxicol Environ Saf 33:193–200CrossRefPubMedGoogle Scholar
  19. 19.
    White PA, Claxton LD (2004) Mutagens in contaminated soil: a review. Mut Res Rev Mut Res 567:227–345CrossRefGoogle Scholar
  20. 20.
    Claxton LD, Umbuzeiro G d A, DeMarini DM (2010) The salmonella mutagenicity assay: the stethoscope of genetic toxicology for the 21st century. Environ Health Perspect 118:1515–1522CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Mortelmans K, Zeiger E (2000) The Ames Salmonella/microsome mutagenicity assay. Mutat Res 455:29–60CrossRefPubMedGoogle Scholar
  22. 22.
    de Souza Pohren R, Rocha JAV, Leal KA et al (2012) Soil mutagenicity as a strategy to evaluate environmental and health risks in a contaminated area. Environ Int 44:40–52CrossRefGoogle Scholar
  23. 23.
    Hagiwara Y, Watanabe M, Oda Y et al (1993) Specificity and sensitivity of Salmonella typhimurium YG1041 and YG1042 strains possessing elevated levels of both nitroreductase and acetyltransferase activity. Mutat Res 291:171–180CrossRefPubMedGoogle Scholar
  24. 24.
    Ames BN, McCann J, Yamasaki E (1975) Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat Res 31:347–364CrossRefPubMedGoogle Scholar
  25. 25.
    Jennings VLK, Rayner-Brandes MH, Bird DJ (2001) Assessing chemical toxicity with the bioluminescent photobacterium (vibrio fischeri): a comparison of three commercial systems. Water Res 35:3448–3456CrossRefPubMedGoogle Scholar
  26. 26.
    Bonnet JL, Bonnemoy F, Dusser M et al (2007) Assessment of the potential toxicity of herbicides and their degradation products to nontarget cells using two microorganisms, the bacteria Vibrio fischeri and the ciliate Tetrahymena pyriformis. Environ Toxicol 22:78–91CrossRefPubMedGoogle Scholar
  27. 27.
    Parvez S, Venkataraman C, Mukherji S (2006) A review on advantages of implementing luminescence inhibition test (Vibrio fischeri) for acute toxicity prediction of chemicals. Environ Int 32:265–268CrossRefPubMedGoogle Scholar
  28. 28.
    Refaey MSM (2013) Assessment of wastewater toxicity changes due to biodegradation processesGoogle Scholar
  29. 29.
    Kaiser KLE, McKinnon MB, Fort FL (1994) Interspecies toxicity correlations of rat, mouse and Photobacterium phosphoreum. Environ Toxicol Chem 13:1599–1606CrossRefGoogle Scholar
  30. 30.
    Kaiser KL (1998) Correlations of Vibrio fischeri Bacteria test data with bioassay data for other organisms. Environ Health Perspect 106(Suppl 2):583–591CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Chang JC, Taylor PB, Leach FR (1981) Use of the Microtox® assay system for environmental samples. Bull Environ Contam Toxicol 26:150–156CrossRefPubMedGoogle Scholar
  32. 32.
    Kováts N (2012) Comparison of conventional and Vibrio fischeri bioassays for the assessment of municipal wastewater toxicity. Environ Eng Manag J 11:2073–2076Google Scholar
  33. 33.
    Symons BD, Sims RC (1988) Assessing detoxification of a complex hazardous waste, using the Microtox bioassay. Arch Environ Contam Toxicol 17:497–505CrossRefPubMedGoogle Scholar
  34. 34.
    Steliga T, Jakubowicz P, Kapusta P (2012) Changes in toxicity during in situ bioremediation of weathered drill wastes contaminated with petroleum hydrocarbons. Bioresour Technol 125:1–10CrossRefPubMedGoogle Scholar
  35. 35.
    Mazzeo DEC, Fernandes TCC, Marin-Morales MA (2016) Attesting the efficiency of monitored natural attenuation in the detoxification of sewage sludge by means of genotoxic and mutagenic bioassays. Chemosphere 163:508–515CrossRefPubMedGoogle Scholar
  36. 36.
    Corroqué NA (2014) Avaliação da toxicidade do azocorante Acid Red 114 antes e após processo de biodegradação por meio de um consórcio de microorganismosGoogle Scholar
  37. 37.
    Bilal M, Iqbal M, Hu H et al (2016) Mutagenicity, cytotoxicity and phytotoxicity evaluation of biodegraded textile effluent by fungal ligninolytic enzymes. Water Sci Technol 73:2332–2344CrossRefPubMedGoogle Scholar
  38. 38.
    Marco-Urrea E, Pérez-Trujillo M, Vicent T et al (2009) Ability of white-rot fungi to remove selected pharmaceuticals and identification of degradation products of ibuprofen by Trametes versicolor. Chemosphere 74:765–772CrossRefPubMedGoogle Scholar
  39. 39.
    Ma TH (1999) The international program on plant bioassays and the report of the follow-up study after the hands-on workshop in China. Mutat Res 426:103–106CrossRefPubMedGoogle Scholar
  40. 40.
    Grant WF (1994) The present status of higher plant bioassays for the detection of environmental mutagens. Mutat Res 310:175–185CrossRefPubMedGoogle Scholar
  41. 41.
    Gopalan H (1999) Ecosystem health and human well being: the mission of the international programme on plant bioassays. Presented at the Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis May 19Google Scholar
  42. 42.
    Geras'kin S, Evseeva T, Oudalova A. Plants as a tool for the environmental health assessment. In: Nriagu JO. Encyclopedia of Environmental Health. San Diego, CA, USA: Elsevier Science, 2011, p 571–579Google Scholar
  43. 43.
    Leme DM, Marin-Morales MA (2009) Allium cepa test in environmental monitoring: a review on its application. Mut Res Rev Mut Res 682:71–81CrossRefGoogle Scholar
  44. 44.
    Souza CP, de Andrade Guedes T, Fontanetti CS (2016) Evaluation of herbicides action on plant bioindicators by genetic biomarkers: a review. Environ Monit Assess 188:694–706Google Scholar
  45. 45.
    Bernal M, Paredes C, Sánchez-Monedero MA et al (1998) Maturity and stability parameters of composts prepared with a wide range of organic wastes. Bioresour Technol 63:91–99CrossRefGoogle Scholar
  46. 46.
    Maluszynska J, Juchimiuk J (2005) Plant genotoxicity: a molecular cytogenetic approach in plant bioassays. Arh Hig Rada Toksikol 56:177–184PubMedGoogle Scholar
  47. 47.
    Fiskesjö G (1985) The Allium test as a standard in environmental monitoring. Hereditas 102:99–112CrossRefPubMedGoogle Scholar
  48. 48.
    Rank J, Nielsen MH (1993) A modified allium test as a tool in the screening of the genotoxicity of complex mixtures. Hereditas 118:49–53CrossRefGoogle Scholar
  49. 49.
    Phillips T, Liu D, Lee H et al (2000) Monitoring bioremediation in creosote-contaminated soils using chemical analysis and toxicity tests. J Ind Microbiol Biotechnol 24:132–139CrossRefGoogle Scholar
  50. 50.
    Mazzeo DEC, Levy CE, de Angelis D d F et al (2010) BTEX biodegradation by bacteria from effluents of petroleum refinery. Sci Total Environ 408:4334–4340CrossRefPubMedGoogle Scholar
  51. 51.
    Mazzeo DEC, Fernandes TCC, Levy CE et al (2015) Monitoring the natural attenuation of a sewage sludge toxicity using the Allium cepa test. Ecologic Indicat 56:60–69CrossRefGoogle Scholar
  52. 52.
    Srivastava R, Kumar D, Gupta SK (2005) Bioremediation of municipal sludge by vermitechnology and toxicity assessment by Allium cepa. Bioresour Technol 96:1867–1871CrossRefPubMedGoogle Scholar
  53. 53.
    Mena E, Garrido A, Hernández T et al (2003) Bioremediation of sewage sludge by composting. Commun Soil Sci Plant Anal 34:957–971CrossRefGoogle Scholar
  54. 54.
    Souza TS, Hencklein FA, Angelis DF et al (2009) The Allium cepa bioassay to evaluate landfarming soil, before and after the addition of rice hulls to accelerate organic pollutants biodegradation. Ecotoxicol Environ Saf 72:1363–1368CrossRefPubMedGoogle Scholar
  55. 55.
    Abdel Migid HM, Azab YA, Ibrahim WM (2007) Use of plant genotoxicity bioassay for the evaluation of efficiency of algal biofilters in bioremediation of toxic industrial effluent. Ecotoxicol Environ Saf 66:57–64CrossRefPubMedGoogle Scholar
  56. 56.
    Raj A, Kumar S, Haq I et al (2014) Bioremediation and toxicity reduction in pulp and paper mill effluent by newly isolated ligninolytic Paenibacillus sp. Ecol Eng 71:355–362CrossRefGoogle Scholar
  57. 57.
    Ventura-Camargo B d C, de Angelis D d F, Marin-Morales MA (2016) Assessment of the cytotoxic, genotoxic and mutagenic effects of the commercial black dye in Allium cepa cells before and after bacterial biodegradation treatment. Chemosphere 161:325–332CrossRefPubMedGoogle Scholar
  58. 58.
    Chelinho S, Moreira-Santos M, Lima D et al (2010) Cleanup of atrazine-contaminated soils: ecotoxicological study on the efficacy of a bioremediation tool with Pseudomonas sp. ADP. J Soil Sedim 10:568–578CrossRefGoogle Scholar
  59. 59.
    Anacleto LR, Roberto MM, Marin-Morales MA (2017) Toxicological effects of the waste of the sugarcane industry, used as agricultural fertilizer, on the test system Allium cepa. Chemosphere 173:31–42CrossRefPubMedGoogle Scholar
  60. 60.
    Mazzeo DEC, Matsumoto ST, Levy CE et al (2013) Application of micronucleus test and comet assay to evaluate BTEX biodegradation. Chemosphere 90:1030–1036CrossRefPubMedGoogle Scholar
  61. 61.
    Manzano BC, Roberto MM, Hoshina MM et al (2015) Evaluation of the genotoxicity of waters impacted by domestic and industrial effluents of a highly industrialized region of São Paulo State, Brazil, by the comet assay in HTC cells. Environ Sci Pollut Res Int 22:1399–1407CrossRefPubMedGoogle Scholar
  62. 62.
    Bianchi J, Cabral-de-Mello DC, Marin-Morales MA (2015) Toxicogenetic effects of low concentrations of the pesticides imidacloprid and sulfentrazone individually and in combination in in vitro tests with HepG2 cells and Salmonella typhimurium. Ecotoxicol Environ Saf 120:174–183CrossRefPubMedGoogle Scholar
  63. 63.
    Hara RV, Marin-Morales MA (2017) In vitro and in vivo investigation of the genotoxic potential of waters from rivers under the influence of a petroleum refinery (São Paulo State - Brazil). Chemosphere 174:321–330CrossRefPubMedGoogle Scholar
  64. 64.
    Ayed L, Kouidhi B, Bekir K et al (2013) Biodegradation of azo and triphenylmethanes dyes: cytotoxicity of dyes, slime production and enzymatic activities of Staphylococcus epidermidis isolated from industrial wastewater. Afr J Microbiol Res 7:5550–5557CrossRefGoogle Scholar
  65. 65.
    Krifa M, Dellai A, Bouhlel I et al (2013) Human cell death in relation to DNA damage after exposure to the untreated and biologically treated pharmaceutical wastewater. Environ Sci Pollut Res 20:3836–3842CrossRefGoogle Scholar
  66. 66.
    Kumari M (2014) Microcosmic study of endosulfan degradation by Paenibacillus sp. ISTP10 and its toxicological evaluation using mammalian cell line. Int Biodeter Biodegr 96:33–40CrossRefGoogle Scholar
  67. 67.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefPubMedGoogle Scholar
  68. 68.
    Fotakis G, Timbrell JA (2006) In vitro cytotoxicity assays: comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicol Lett 160:171–177CrossRefPubMedGoogle Scholar
  69. 69.
    Babich H, Borenfreund E (1991) Cytotoxicity and genotoxicity assays with cultured fish cells: a review. Toxicol In Vitro 5:91–100CrossRefPubMedGoogle Scholar
  70. 70.
    Repetto G, del Peso A, Zurita JL (2008) Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 3:1125–1131CrossRefPubMedGoogle Scholar
  71. 71.
    Matsumoto ST, Mantovani MS, Malaguttii MIA et al (2006) Genotoxicity and mutagenicity of water contaminated with tannery effluents, as evaluated by the micronucleus test and comet assay using the fish Oreochromis niloticus and chromosome aberrations in onion root-tips. Genet Mol Biol 29:148–158CrossRefGoogle Scholar
  72. 72.
    Neri M, Milazzo D, Ugolini D et al (2014) Worldwide interest in the comet assay: a bibliometric study. Mutagenesis 30:155–163CrossRefGoogle Scholar
  73. 73.
    Speit G, Vasquez M, Hartmann A (2009) The comet assay as an indicator test for germ cell genotoxicity. Mut Res Rev Mut Res 681:3–12CrossRefGoogle Scholar
  74. 74.
    Collins A, Koppen G, Valdiglesias V et al (2014) The comet assay as a tool for human biomonitoring studies: the ComNet project. Mut Res Rev Mut Res 759:27–39CrossRefGoogle Scholar
  75. 75.
    Pavlica M, Klobučar GIV, Mojaš N et al (2001) Detection of DNA damage in haemocytes of zebra mussel using comet assay. Mut Res Genet Toxicol Environ Mutagen 490:209–214CrossRefGoogle Scholar
  76. 76.
    Carter SB (1967) Effects of cytochalasins on mammalian cells. Nature 213:261–264CrossRefPubMedGoogle Scholar
  77. 77.
    Fenech M (2009) A lifetime passion for micronucleus cytome assays-reflections from Down Under. Mut Res Rev Mut Res 681:111–117CrossRefGoogle Scholar
  78. 78.
    Fenech M (2000) The in vitro micronucleus technique. Mutat Res 455:81–95CrossRefPubMedGoogle Scholar
  79. 79.
    Kirsch-Volders M, Plas G, Elhajouji A et al (2011) The in vitro MN assay in 2011: origin and fate, biological significance, protocols, high throughput methodologies and toxicological relevance. Arch Toxicol 85:873–899CrossRefPubMedGoogle Scholar
  80. 80.
    Fenech M (2006) Cytokinesis-block micronucleus assay evolves into a “cytome” assay of chromosomal instability, mitotic dysfunction and cell death. Mut Res Fund Mol Mech Mutagen 600:58–66CrossRefGoogle Scholar
  81. 81.
    Fenech M (2007) Cytokinesis-block micronucleus cytome assay. Nat Protoc 2:1084–1104CrossRefPubMedGoogle Scholar
  82. 82.
    Garriott ML, Phelps JB, Hoffman WP (2002) A protocol for the in vitro micronucleus test. I. Contributions to the development of a protocol suitable for regulatory submissions from an examination of 16 chemicals with different mechanisms of action and different levels of activity. Mutat Res 517:123–134CrossRefPubMedGoogle Scholar
  83. 83.
    Bafana A, Jain M, Agrawal G et al (2009) Bacterial reduction in genotoxicity of Direct Red 28 dye. Chemosphere 74:1404–1406CrossRefPubMedGoogle Scholar
  84. 84.
    Das MT, Budhraja V, Mishra M et al (2012) Toxicological evaluation of paper mill sewage sediment treated by indigenous dibenzofuran-degrading Pseudomonas sp. Bioresour Technol 110:71–78CrossRefPubMedGoogle Scholar
  85. 85.
    Mishra M, Das MT, Thakur IS (2014) Mammalian cell-line based toxicological evaluation of paper mill black liquor treated in a soil microcosm by indigenous alkalo-tolerant Bacillus sp. Environ Sci Pollut Res 21:2966–2976CrossRefGoogle Scholar
  86. 86.
    Naik UC, Das MT, Sauran S et al (2014) Assessment of in vitro cyto/genotoxicity of sequentially treated electroplating effluent on the human hepatocarcinoma HuH-7 cell line. Mut Res Genet Toxicol Environ Mutagen 762:9–16CrossRefGoogle Scholar
  87. 87.
    Sundaram S, Das MT, Thakur IS (2013) Biodegradation of cypermethrin by Bacillus sp. in soil microcosm and in-vitro toxicity evaluation on human cell line. Int Biodeter Biodegr 77:39–44CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Dânia E. C. Mazzeo
    • 1
    • 2
  • Matheus M. Roberto
    • 1
    • 3
  • Laís R. D. Sommaggio
    • 1
  • Maria A. Marin-Morales
    • 1
  1. 1.Department of Biology, Institute of BiosciencesSão Paulo State University (UNESP)Rio ClaroBrazil
  2. 2.Institute of ChemistrySão Paulo State University (UNESP)AraraquaraBrazil
  3. 3.Hermínio Ometto University Center (Uniararas)ArarasBrazil

Personalised recommendations