An Overview of Methods to Detect Biodegradation Limiting Conditions

  • Jaqueline Matos Cruz
  • Renato Nallin Montagnolli
  • Elis Marina Turini Claro
  • Gabriela Mercuri Quitério
  • José Rubens Moraes Júnior
  • Paulo Renato Matos Lopes
  • Ederio Dino Bidoia
Protocol
Part of the Methods in Pharmacology and Toxicology book series (MIPT)

Abstract

The chapter discusses some limitations to perform the successful results obtained with two methodologies widely used in laboratory scale to environmental conditions. Certainly, the microorganisms are the most important tools for the biodegradation process. For this reason, the biodegradability of any compound requires an active microbial consortium or an adequate succession of microorganisms. Also, the conditions to guarantee the microbial growth must be provided, such as micro and macronutrients, final electrons acceptor, optimal temperature, and range of suitable pH. We considered the temperature and pH as powerful factors to the biodegradation process, because the temperature defines the growth rate of the microorganisms and the pH plays a role in selecting the microorganisms per the different range of pH. In this chapter, we discussed how the natural biodegradation process, subject to dynamic environmental conditions such as temperature, pH range, and microbial succession, can possibly differ of experiments in controlled laboratory conditions.

Key words

Respirometry Colorimetry Toxicity Bioremediation 

References

  1. 1.
    Bartha R, Pramer D (1965) Features of flask and method for measuring the persistence and biological effects of pesticides in soil. Soil Sci 100:68–70CrossRefGoogle Scholar
  2. 2.
    Itävaara M, Vikman M (1996) An overview of methods for biodegradability testing of biopolymers and packaging materials. J Environ Polym Degrad 4:29–36CrossRefGoogle Scholar
  3. 3.
    Strotmann U, Reuschenbach P, Schwarz H, Pagga U (2004) Development and evaluation of an online CO2 evolution test and a multicomponent biodegradation test system. Appl Environ Microbiol 70:4621–4628. doi: 10.1128/AEM.70.8.4621 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Reuschenbach P, Pagga U, Strotmann U (2003) A critical comparison of respirometric biodegradation tests based on OECD 301 and related test methods. Water Res 37:1571–1582. doi: 10.1016/S0043-1354(02)00528-6 CrossRefPubMedGoogle Scholar
  5. 5.
    Karhu M, Kaakinen J, Kuokkanen T, Rämö J (2009) Biodegradation of light fuel oils in water soil as determined by the manometric respirometric method. Water Air Soil Pollut 197(1):3–14. doi: 10.1007/s11270-008-9752-6 CrossRefGoogle Scholar
  6. 6.
    OECD (1995) Detailed review paper on biodegradability testing. Test N. 301. Environmental monograph n. 98. OECD, ParisGoogle Scholar
  7. 7.
    OECD (1992.) Guidelines for the testing of chemicals, section 3. Degradation and accumulation. Test n. 301: Ready Biodegradability, French. doi:  10.1787/9789264070349-en
  8. 8.
    Kaplan CW, Kitts CL (2004) Bacterial succession in a petroleum land treatment unit. Appl Environ Microbiol 70(3):1777–1786. doi: 10.1128/AEM.70.3.1777-1786.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Zhou J, Deng Y, Zhang P, Xue K, Liang Y, Nostrand JDV, Yang Y, He Z, Wu L, Stahl DA, Hazen TC, Tiedje JM, Arkin AP (2014) Stochasticity, succession, and environmental perturbations in a fluidic ecosystem. Proc Natl Acad Sci U S A 111(9):836–845. doi: 10.1073/pnas.1324044111 CrossRefGoogle Scholar
  10. 10.
    Jiao S, Chen W, Wang E, Wang J, Liu Z, Li Y, Wei G (2016) Microbial succession in response to pollutants in batch-enrichment culture. Sci Rep 6(21791):1–11. doi: 10.1038/srep21791 Google Scholar
  11. 11.
    Buckeridge KM, Banerjee S, Siciliano SD, Grogan P (2013) The seasonal pattern of soil microbial community structure in mesic low arctic tundra. Soil Biol Biochem 65:338–347. doi: 10.1016/j.soilbio.2013.06.012 CrossRefGoogle Scholar
  12. 12.
    Horisawa S, Sakuma Y, Tamai Y, Doim S, Terazawam M (2001) Effect of environmental temperature on a small scale bio-degradation system for organic solid waste. J Wood Sci 47(2):154–158. doi: 10.1007/BF00780566 CrossRefGoogle Scholar
  13. 13.
    Yadav BK, Sherestha SR, Hassanizadeh SM (2012) Biodegradation of toluene under seasonal and diurnal fluctuations of soil-water temperature. Water Air Soil Pollut 223(7):3579–3588. doi: 10.1007/s11270-011-1052-x CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Gillespie LJ (1920) Reduction potentials of bacterial cultures and of water logged soils. Soil Sci 9(4):199–216CrossRefGoogle Scholar
  15. 15.
    Potter MC (1911) Electrical effects accompanying the decomposition of organic compounds. Proc R Soc Lond B 84:260–276. doi: 10.1098/rspb.1911.0073 CrossRefGoogle Scholar
  16. 16.
    Hanson KG, Desai JD, Desai AJ (1993) A rapid and simple screening technique for potential crude oil degrading microorganisms. Biotechnol Tech 7:745–748. doi: 10.1007/BF00152624 CrossRefGoogle Scholar
  17. 17.
    Van Hamme JD, Odumeru JA, Ward OP (2000) Community dynamics of a mixed-bacterial culture growing on petroleum hydrocarbons in batch culture. Can J Microbiol 46(5):441–450CrossRefPubMedGoogle Scholar
  18. 18.
    Roy S, Hens D, Biswas B, Biswas D, Kumar R (2002) Survey of petroleum-degrading bacteria in coastal waters of Sunderban biosphere reserve. World J Microbiol Biotechnol 18:575–581. doi: 10.1023/A:1016362819746 CrossRefGoogle Scholar
  19. 19.
    Kubota K, Koma D, Matsumiya Y, Chung SY, Kubo M (2008) Phylogenetic analysis of long-chain hydrocarbon-degrading bacteria and evaluation of their hydrocarbon-degradation by the 2,6-DCPIP assay. Biodegradation 19:749–757. doi: 10.1007/s10532-008-9179-1 CrossRefPubMedGoogle Scholar
  20. 20.
    Mariano AP, Tomasella RC, Oliveira LM, Contiero J, Angelis DF (2008) Biodegradability of diesel and biodiesel blends. Afr J Biotechnol 7:1323–1328. http://dx.doi.org/10.4314%2Fajb.v7i9.58669Google Scholar
  21. 21.
    Bidoia ED, Montagnolli RN, Lopes PRM (2010) Microbial biodegradation potential of hydrocarbons evaluated by colorimetric technique: a case study. In: Méndez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology, vol 2. Formatex Publisher Research Center, Brazil, pp 1277–1288Google Scholar
  22. 22.
    Montagnolli RN, Lopes PRM, Cruz JM, Claro EMT, Quitério GM, Bidoia ED (2017) The effects of fluoride based fire-fighting foams on soil microbiota activity and plant growth during natural attenuation of perfluorinated compounds. Environ Toxicol Pharmacol 50:119–127. doi: 10.1016/j.etap.2017.01.017 CrossRefPubMedGoogle Scholar
  23. 23.
    Cruz JM, Tamada IS, Lopes PRM, Montagnolli RN (2014) Biodegradation and phytotoxicity of biodiesel, diesel and petroleum in soil. Water Air Soil Pollut 225:1962. doi: 10.1007/s11270-014-1962-5 CrossRefGoogle Scholar
  24. 24.
    Alef K, Nannipieri P (1995) Enzyme activities. In: Alef K, Nannipieri P (eds) Methods in applied soil microbiology and biochemistry. Academic, New YorkGoogle Scholar
  25. 25.
    Silva-castro GA, Rodriguez-Calvo A, Laguna J, Gonzalez-Lopez J, Calvo C (2016) Autochthonous microbial responses and hydrocarbons degradation in polluted soil during biostimulating treatments under different soil moisture. Assay in pilot plant. Int Biodeterior Biodegrad 108:91–98. doi: 10.1016/j.ibiod.2015.12.009 CrossRefGoogle Scholar
  26. 26.
    Shen W, Zhu N, Cui J, Wang H, Dang Z, Wu P, Luo Y, Shi C (2016) Ecotoxicology and environmental safety ecotoxicity monitoring and bioindicator screening of oil-contaminated soil during bioremediation. Ecotoxicol Environ Saf 124:120–128. doi: 10.1016/j.ecoenv.2015.10.005 CrossRefPubMedGoogle Scholar
  27. 27.
    Nwankwegu AS, Onwosi CO (2017) Bioremediation of gasoline contaminated agricultural soil by bioaugmentation. Environ Technol Innov 7:1–11. doi: 10.1016/j.eti.2016.11.003 CrossRefGoogle Scholar
  28. 28.
    Wu M, Ye X, Chen K, Li W, Yuan J, Jiang X (2017) Bacterial community shift and hydrocarbon transformation during bioremediation of short-term petroleum-contaminated soil. Environ Pollut. doi: 10.1016/j.envpol.2017.01.079
  29. 29.
    Wu Y, Zeng J, Zhu Q, Zhang Z, Lin X (2017b) PH is the primary determinant of the bacterial community structure in agricultural soils impacted by polycyclic aromatic hydrocarbon pollution. Sci Rep 7:1–7. doi: 10.1038/srep40093 CrossRefGoogle Scholar
  30. 30.
    Eross K, Svehla G, Erdey L (1964) The use of 2,6 Dichlorophenolindophenol as indicator in acid-base titrations. Anal Chim Acta 31:246–250CrossRefGoogle Scholar
  31. 31.
    Wolińska A, Bennicelli RP (2010) Dehydrogenase activity response to soil reoxidation process described as varied condition of water potential, air porosity and oxygen availability. Pol J Environ Stud 19:651–657Google Scholar
  32. 32.
    Beilen JBV, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74:13–21. doi: 10.1007/s00253-006-0748-0 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Jaqueline Matos Cruz
    • 1
  • Renato Nallin Montagnolli
    • 1
  • Elis Marina Turini Claro
    • 1
  • Gabriela Mercuri Quitério
    • 1
  • José Rubens Moraes Júnior
    • 1
  • Paulo Renato Matos Lopes
    • 2
  • Ederio Dino Bidoia
    • 1
  1. 1.Department of Biochemistry and Microbiology, Institute of BiosciencesSão Paulo State University (UNESP)Rio ClaroBrazil
  2. 2.College of Agricultural and Technological SciencesSão Paulo State University (UNESP)DracenaBrazil

Personalised recommendations