Skip to main content

A Hitchhiker’s Guide to the Selection of Viral Vectors for Optogenetic Studies

  • Protocol
  • First Online:
Book cover Optogenetics: A Roadmap

Part of the book series: Neuromethods ((NM,volume 133))

Abstract

The very first article to describe optogenetics in neural systems used viruses as delivery vectors (Boyden et al., Nat Neurosci 8(9):1263–1268, 2005). Since then, viral-mediated gene delivery has become the method of choice for opsin expression in the field. There are many classes of viruses, each with unique attributes that can be taken advantage of to serve specific experimental needs. For example, precise cellular targeting can be achieved by exploiting the propensity of different vectors to transduce specific cell types. Distinct anatomical inputs or outputs to defined regions can be identified and manipulated by choosing vectors for opsin expression with retrograde or anterograde trafficking abilities. Some vectors also have the capability to spread between synaptically connected neurons, and this holds great potential for the determination of structure–function relationships across complex networks. Here we review the major viral vector types used in optogenetic studies and offer a detailed protocol for the production of adeno-associated virus, which has become the most popular vector for optogenetic applications. This chapter is intended to provide an understanding of basic principles in vectorology and to serve as a user’s guide to aid in the selection of appropriate vector. The engineering of recombinant viruses promises to expand the level of experimental precision and control, and may one day even lead to effective optogenetic therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Simmich J, Staykov E, Scott E (2012) Zebrafish as an appealing model for optogenetic studies. Prog Brain Res 196:145–162

    Article  CAS  PubMed  Google Scholar 

  2. Zhang F, Gradinaru V, Adamantidis AR et al (2010) Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Nat Protoc 5(3):439–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Naldini L (1998) Lentiviruses as gene transfer agents for delivery to non-dividing cells. Curr Opin Biotechnol 9(5):457–463

    Article  CAS  PubMed  Google Scholar 

  4. Parr-Brownlie LC, Bosch-Bouju C, Schoderboeck L et al (2015) Lentiviral vectors as tools to understand central nervous system biology in mammalian model organisms. Front Mol Neurosci 8:14

    Article  PubMed  PubMed Central  Google Scholar 

  5. Stroh A, Tsai HC, Wang LP et al (2011) Tracking stem cell differentiation in the setting of automated optogenetic stimulation. Stem Cells 29(1):78–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bartholomae CC, Arens A, Balaggan KS et al (2011) Lentiviral vector integration profiles differ in rodent postmitotic tissues. Mol Ther 19(4):703–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Abordo-Adesida E, Follenzi A, Barcia C et al (2005) Stability of lentiviral vector-mediated transgene expression in the brain in the presence of systemic antivector immune responses. Hum Gene Ther 16(6):741–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Annoni A, Battaglia M, Follenzi A et al (2007) The immune response to lentiviral-delivered transgene is modulated in vivo by transgene-expressing antigen-presenting cells but not by CD4+CD25+ regulatory T cells. Blood 110(6):1788–1796

    Article  CAS  PubMed  Google Scholar 

  9. Blomer U, Naldini L, Kafri T et al (1997) Highly efficient and sustained gene transfer in adult neurons with a lentivirus vector. J Virol 71(9):6641–6649

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Cronin J, Zhang XY, Reiser J (2005) Altering the tropism of lentiviral vectors through pseudotyping. Curr Gene Ther 5(4):387–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jakobsson J, Ericson C, Jansson M et al (2003) Targeted transgene expression in rat brain using lentiviral vectors. J Neurosci Res 73(6):876–885

    Article  CAS  PubMed  Google Scholar 

  12. Kumar M, Keller B, Makalou N et al (2001) Systematic determination of the packaging limit of lentiviral vectors. Hum Gene Ther 12(15):1893–1905

    Article  CAS  PubMed  Google Scholar 

  13. Cetin A, Komai S, Eliava M et al (2006) Stereotaxic gene delivery in the rodent brain. Nat Protoc 1(6):3166–3173

    Article  CAS  PubMed  Google Scholar 

  14. Lerchner W, Corgiat B, Der Minassian V et al (2014) Injection parameters and virus dependent choice of promoters to improve neuron targeting in the nonhuman primate brain. Gene Ther 21(3):233–241

    Article  CAS  PubMed  Google Scholar 

  15. Boyden ES, Zhang F, Bamberg E et al (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8(9):1263–1268

    Article  CAS  PubMed  Google Scholar 

  16. Yizhar O, Fenno LE, Davidson TJ et al (2011) Optogenetics in neural systems. Neuron 71(1):9–34

    Article  CAS  PubMed  Google Scholar 

  17. Diester I, Kaufman MT, Mogri M et al (2011) An optogenetic toolbox designed for primates. Nat Neurosci 14(3):387–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Han X (2012) Optogenetics in the nonhuman primate. Prog Brain Res 196:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nassi JJ, Cepko CL, Born RT et al (2015) Neuroanatomy goes viral! Front Neuroanat 9:80

    Article  PubMed  PubMed Central  Google Scholar 

  20. Burger C, Gorbatyuk OS, Velardo MJ et al (2004) Recombinant AAV viral vectors pseudotyped with viral capsids from serotypes 1, 2, and 5 display differential efficiency and cell tropism after delivery to different regions of the central nervous system. Mol Ther 10(2):302–317

    Article  CAS  PubMed  Google Scholar 

  21. Towne C, Schneider BL, Kieran D et al (2010) Efficient transduction of non-human primate motor neurons after intramuscular delivery of recombinant AAV serotype 6. Gene Ther 17(1):141–146

    Article  CAS  PubMed  Google Scholar 

  22. van den Pol AN, Ozduman K, Wollmann G et al (2009) Viral strategies for studying the brain, including a replication-restricted self-amplifying delta-G vesicular stomatis virus that rapidly expresses transgenes in brain and can generate a multicolor golgi-like expression. J Comp Neurol 516(6):456–481

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Betley JN, Sternson SM (2011) Adeno-associated viral vectors for mapping, monitoring, and manipulating neural circuits. Hum Gene Ther 22(6):669–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Asokan A, Schaffer DV, Samulski RJ (2012) The AAV vector toolkit: poised at the clinical crossroads. Mol Ther 20(4):699–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kaplitt MG, Feigin A, Tang C et al (2007) Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson's disease: an open label, phase I trial. Lancet 369(9579):2097–2105

    Article  CAS  PubMed  Google Scholar 

  26. Gray SJ, Foti SB, Schwartz JW et al (2011) Optimizing promoters for recombinant adeno-associated virus-mediated gene expression in the peripheral and central nervous system using self-complementary vectors. Hum Gene Ther 22(9):1143–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. McCarty DM, Monahan PE, Samulski RJ (2001) Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther 8(16):1248–1254

    Article  CAS  PubMed  Google Scholar 

  28. Gao G, Vandenberghe LH, Wilson JM (2005) New recombinant serotypes of AAV vectors. Curr Gene Ther 5(3):285–297

    Article  CAS  PubMed  Google Scholar 

  29. Choi VW, McCarty DM, Samulski RJ (2005) AAV hybrid serotypes: improved vectors for gene delivery. Curr Gene Ther 5(3):299–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu X, Ramirez S, Pang PT et al (2012) Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484(7394):381–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jego S, Glasgow SD, Herrera CG et al (2013) Optogenetic identification of a rapid eye movement sleep modulatory circuit in the hypothalamus. Nat Neurosci 16(11):1637–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fenno LE, Mattis J, Ramakrishnan C et al (2014) Targeting cells with single vectors using multiple-feature Boolean logic. Nat Methods 11(7):763–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rothwell PE, Hayton SJ, Sun GL et al (2015) Input- and output-specific regulation of serial order performance by corticostriatal circuits. Neuron 88(2):345–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Deverman BE, Pravdo PL, Simpson BP et al (2016) Cre-dependent selection yields AAV variants for widespread gene transfer to the adult brain. Nat Biotechnol 34(2):204–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bi A, Cui J, Ma YP et al (2006) Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50(1):23–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang Y, Ivanova E, Bi A et al (2009) Ectopic expression of multiple microbial rhodopsins restores ON and OFF light responses in retinas with photoreceptor degeneration. J Neurosci 29(29):9186–9196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tomita H, Sugano E, Isago H et al (2010) Channelrhodopsin-2 gene transduced into retinal ganglion cells restores functional vision in genetically blind rats. Exp Eye Res 90(3):429–436

    Article  CAS  PubMed  Google Scholar 

  38. Iyer SM, Montgomery KL, Towne C et al (2014) Virally mediated optogenetic excitation and inhibition of pain in freely moving nontransgenic mice. Nat Biotechnol 32(3):274–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Boada MD, Martin TJ, Peters CM et al (2014) Fast-conducting mechanoreceptors contribute to withdrawal behavior in normal and nerve injured rats. Pain 155(12):2646–2655

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hernandez VH, Gehrt A, Jing Z et al (2014) Optogenetic stimulation of the auditory nerve. J Vis Exp 92:e52069

    Google Scholar 

  41. Towne C, Montgomery KL, Iyer SM et al (2013) Optogenetic control of targeted peripheral axons in freely moving animals. PLoS One 8(8):e72691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ambrosi CM, Entcheva E (2014) Optogenetic control of cardiomyocytes via viral delivery. Methods Mol Biol 1181:215–228

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Vogt CC, Bruegmann T, Malan D et al (2015) Systemic gene transfer enables optogenetic pacing of mouse hearts. Cardiovasc Res 106(2):338–343

    Article  CAS  PubMed  Google Scholar 

  44. Nussinovitch U, Gepstein L (2015) Optogenetics for in vivo cardiac pacing and resynchronization therapies. Nat Biotechnol 33(7):750–754

    Article  CAS  PubMed  Google Scholar 

  45. Bruegmann T, van Bremen T, Vogt CC et al (2015) Optogenetic control of contractile function in skeletal muscle. Nat Commun 6:7153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gerits A, Farivar R, Rosen BR et al (2012) Optogenetically induced behavioral and functional network changes in primates. Curr Biol 22(18):1722–1726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jazayeri M, Lindbloom-Brown Z, Horwitz GD (2012) Saccadic eye movements evoked by optogenetic activation of primate V1. Nat Neurosci 15(10):1368–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cavanaugh J, Monosov IE, McAlonan K et al (2012) Optogenetic inactivation modifies monkey visuomotor behavior. Neuron 76(5):901–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Foust KD, Nurre E, Montgomery CL et al (2009) Intravascular AAV9 preferentially targets neonatal neurons and adult astrocytes. Nat Biotechnol 27(1):59–65

    Article  CAS  PubMed  Google Scholar 

  50. Maguire CA, Ramirez SH, Merkel SF et al (2014) Gene therapy for the nervous system: challenges and new strategies. Neurotherapeutics 11(4):817–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gray SJ, Matagne V, Bachaboina L et al (2011) Preclinical differences of intravascular AAV9 delivery to neurons and glia: a comparative study of adult mice and nonhuman primates. Mol Ther 19(6):1058–1069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Grimm D, Lee JS, Wang L et al (2008) In vitro and in vivo gene therapy vector evolution via multispecies interbreeding and retargeting of adeno-associated viruses. J Virol 82(12):5887–5911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Seiler MP, Cerullo V, Lee B (2007) Immune response to helper dependent adenoviral mediated liver gene therapy: challenges and prospects. Curr Gene Ther 7(5):297–305

    Article  CAS  PubMed  Google Scholar 

  54. Kremer EJ, Boutin S, Chillon M et al (2000) Canine adenovirus vectors: an alternative for adenovirus-mediated gene transfer. J Virol 74(1):505–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kissa K, Mordelet E, Soudais C et al (2002) In vivo neuronal tracing with GFP-TTC gene delivery. Mol Cell Neurosci 20(4):627–637

    Article  CAS  PubMed  Google Scholar 

  56. Peltekian E, Garcia L, Danos O (2002) Neurotropism and retrograde axonal transport of a canine adenoviral vector: a tool for targeting key structures undergoing neurodegenerative processes. Mol Ther 5(1):25–32

    Article  CAS  PubMed  Google Scholar 

  57. Soudais C, Laplace-Builhe C, Kissa K et al (2001) Preferential transduction of neurons by canine adenovirus vectors and their efficient retrograde transport in vivo. FASEB J 15(12):2283–2285

    CAS  PubMed  Google Scholar 

  58. Li Y, Hickey L, Perrins R et al (2016) Retrograde optogenetic characterization of the pontospinal module of the locus coeruleus with a canine adenoviral vector. Brain Res 1641(Pt B):274–290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rajasethupathy P, Sankaran S, Marshel JH et al (2015) Projections from neocortex mediate top-down control of memory retrieval. Nature 526(7575):653–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lilley CE, Groutsi F, Han Z et al (2001) Multiple immediate-early gene-deficient herpes simplex virus vectors allowing efficient gene delivery to neurons in culture and widespread gene delivery to the central nervous system in vivo. J Virol 75(9):4343–4356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Neve RL (2012) Overview of gene delivery into cells using HSV-1-based vectors. Curr Protoc Neurosci Chapter 4:Unit 4 12

    Google Scholar 

  62. Zou M, De Koninck P, Neve RL et al (2014) Fast gene transfer into the adult zebrafish brain by herpes simplex virus 1 (HSV-1) and electroporation: methods and optogenetic applications. Front Neural Circuits 8:41

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Fink DJ, DeLuca NA, Goins WF et al (1996) Gene transfer to neurons using herpes simplex virus-based vectors. Annu Rev Neurosci 19:265–287

    Article  CAS  PubMed  Google Scholar 

  64. Covington HE 3rd, Lobo MK, Maze I et al (2010) Antidepressant effect of optogenetic stimulation of the medial prefrontal cortex. J Neurosci 30(48):16082–16090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lobo MK, Covington HE 3rd, Chaudhury D et al (2010) Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330(6002):385–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lima SQ, Hromadka T, Znamenskiy P et al (2009) PINP: a new method of tagging neuronal populations for identification during in vivo electrophysiological recording. PLoS One 4(7):e6099

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Taber KH, Strick PL, Hurley RA (2005) Rabies and the cerebellum: new methods for tracing circuits in the brain. J Neuropsychiatry Clin Neurosci 17(2):133–139

    Article  PubMed  Google Scholar 

  68. Callaway EM (2008) Transneuronal circuit tracing with neurotropic viruses. Curr Opin Neurobiol 18(6):617–623

    Article  CAS  PubMed  Google Scholar 

  69. Ugolini G (2011) Rabies virus as a transneuronal tracer of neuronal connections. Adv Virus Res 79:165–202

    Article  CAS  PubMed  Google Scholar 

  70. Bauer A, Nolden T, Schroter J et al (2014) Anterograde glycoprotein-dependent transport of newly generated rabies virus in dorsal root ganglion neurons. J Virol 88(24):14172–14183

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Tsiang H, Lycke E, Ceccaldi PE et al (1989) The anterograde transport of rabies virus in rat sensory dorsal root ganglia neurons. J Gen Virol 70(Pt 8):2075–2085

    Article  PubMed  Google Scholar 

  72. Lammel S, Lim BK, Ran C et al (2012) Input-specific control of reward and aversion in the ventral tegmental area. Nature 491(7423):212–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Callaway EM, Luo L (2015) Monosynaptic circuit tracing with glycoprotein-deleted rabies viruses. J Neurosci 35(24):8979–8985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wickersham IR, Lyon DC, Barnard RJ et al (2007) Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53(5):639–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Krashes MJ, Shah BP, Madara JC et al (2014) An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature 507(7491):238–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lerner TN, Shilyansky C, Davidson TJ et al (2015) Intact-brain analyses reveal distinct information carried by SNc dopamine subcircuits. Cell 162(3):635–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ogawa SK, Cohen JY, Hwang D et al (2014) Organization of monosynaptic inputs to the serotonin and dopamine neuromodulatory systems. Cell Rep 8(4):1105–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Watabe-Uchida M, Zhu L, Ogawa SK et al (2012) Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 74(5):858–873

    Article  CAS  PubMed  Google Scholar 

  79. Osakada F, Callaway EM (2013) Design and generation of recombinant rabies virus vectors. Nat Protoc 8(8):1583–1601

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Osakada F, Mori T, Cetin AH et al (2011) New rabies virus variants for monitoring and manipulating activity and gene expression in defined neural circuits. Neuron 71(4):617–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Beier KT, Steinberg EE, DeLoach KE et al (2015) Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. Cell 162(3):622–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Schwarz LA, Miyamichi K, Gao XJ et al (2015) Viral-genetic tracing of the input-output organization of a central noradrenaline circuit. Nature 524(7563):88–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kim EJ, Jacobs MW, Ito-Cole T et al (2016) Improved monosynaptic neural circuit tracing using engineered rabies virus glycoproteins. Cell Rep. doi:10.1016/j.celrep.2016.03.067

  84. Reardon TR, Murray AJ, Turi GF et al (2016) Rabies virus CVS-N2c(DeltaG) strain enhances retrograde synaptic transfer and neuronal viability. Neuron 89(4):711–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dong B, Nakai H, Xiao W (2010) Characterization of genome integrity for oversized recombinant AAV vector. Mol Ther 18(1):87–92

    Article  CAS  PubMed  Google Scholar 

  86. Dong JY, Fan PD, Frizzell RA (1996) Quantitative analysis of the packaging capacity of recombinant adeno-associated virus. Hum Gene Ther 7(17):2101–2112

    Article  CAS  PubMed  Google Scholar 

  87. Goshen I, Brodsky M, Prakash R et al (2011) Dynamics of retrieval strategies for remote memories. Cell 147(3):678–689

    Article  CAS  PubMed  Google Scholar 

  88. Zhu P, Narita Y, Bundschuh ST et al (2009) Optogenetic dissection of neuronal circuits in zebrafish using viral gene transfer and the Tet system. Front Neural Circuits 3:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Miyashita T, Shao YR, Chung J et al (2013) Long-term channelrhodopsin-2 (ChR2) expression can induce abnormal axonal morphology and targeting in cerebral cortex. Front Neural Circuits 7:8

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Matsushita T, Elliger S, Elliger C et al (1998) Adeno-associated virus vectors can be efficiently produced without helper virus. Gene Ther 5(7):938–945

    Article  CAS  PubMed  Google Scholar 

  91. Xiao X, Li J, Samulski RJ (1998) Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 72(3):2224–2232

    CAS  PubMed  PubMed Central  Google Scholar 

  92. McClure C, Cole KL, Wulff P et al (2011) Production and titering of recombinant adeno-associated viral vectors. J Vis Exp 57:e3348

    Google Scholar 

  93. Burova E, Ioffe E (2005) Chromatographic purification of recombinant adenoviral and adeno-associated viral vectors: methods and implications. Gene Ther 12(Suppl 1):S5–17

    Article  CAS  PubMed  Google Scholar 

  94. Strobel B, Miller FD, Rist W et al (2015) Comparative analysis of cesium chloride- and iodixanol-based purification of recombinant adeno-associated viral vectors for preclinical applications. Hum Gene Ther Methods 26(4):147–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Towne C, Aebischer P (2009) Lentiviral and adeno-associated vector-based therapy for motor neuron disease through RNAi. Methods Mol Biol 555:87–108

    Article  CAS  PubMed  Google Scholar 

  96. Ayuso E, Mingozzi F, Montane J et al (2010) High AAV vector purity results in serotype- and tissue-independent enhancement of transduction efficiency. Gene Ther 17(4):503–510

    Article  CAS  PubMed  Google Scholar 

  97. Wright JF (2008) Manufacturing and characterizing AAV-based vectors for use in clinical studies. Gene Ther 15(11):840–848

    Article  CAS  PubMed  Google Scholar 

  98. Grieger JC, Choi VW, Samulski RJ (2006) Production and characterization of adeno-associated viral vectors. Nat Protoc 1(3):1412–1428

    Article  CAS  PubMed  Google Scholar 

  99. Tye KM, Deisseroth K (2012) Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat Rev Neurosci 13(4):251–266

    Article  CAS  PubMed  Google Scholar 

  100. Buning H, Huber A, Zhang L et al (2015) Engineering the AAV capsid to optimize vector-host-interactions. Curr Opin Pharmacol 24:94–104

    Article  PubMed  CAS  Google Scholar 

  101. Hirsch ML, Wolf SJ, Samulski RJ (2016) Delivering transgenic DNA exceeding the carrying capacity of AAV vectors. Methods Mol Biol 1382:21–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Maheshri N, Koerber JT, Kaspar BK et al (2006) Directed evolution of adeno-associated virus yields enhanced gene delivery vectors. Nat Biotechnol 24(2):198–204

    Article  CAS  PubMed  Google Scholar 

  103. Dalkara D, Byrne LC, Klimczak RR et al (2013) In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci Transl Med 5(189):189ra176

    Article  CAS  Google Scholar 

  104. Tervo DG, Hwang BY, Viswanathan S et al (2016) A Designer AAV Variant Permits Efficient Retrograde Access to Projection Neurons. Neuron 92(2):372–382

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kimberly R. Thompson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Thompson, K.R., Towne, C. (2018). A Hitchhiker’s Guide to the Selection of Viral Vectors for Optogenetic Studies. In: Stroh, A. (eds) Optogenetics: A Roadmap. Neuromethods, vol 133. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7417-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7417-7_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7415-3

  • Online ISBN: 978-1-4939-7417-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics