Skip to main content

Identification of Plant Nuclear Proteins Based on a Combination of Flow Sorting, SDS-PAGE, and LC-MS/MS Analysis

  • Protocol
  • First Online:
Plant Membrane Proteomics

Abstract

In the plant nucleus, the majority of cellular DNA content is stored and maintained. This makes this highly specialized organelle the major coordinator of almost all essential processes in plant cells such as transcription, DNA replication, and repair. None of these biological pathways can be fully understood without a comprehensive characterization of nuclear proteins. Nevertheless, the interest of the proteomic community in the plant nuclear proteome has been very limited so far. This is probably due to the high integrity of plant cell, presence of many interfering metabolites, and considerable endogenous proteolytic activity which make the sample preparation problematic. Hereby, we describe a novel protocol for the high-throughput plant nuclear protein identification that combines a flow cytometric sorting of formaldehyde-fixed nuclei with protein and peptide separation and their subsequent LC-MS/MS analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACN:

Acetonitrile

AmBic:

Ammonium bicarbonate

APS:

Ammonium persulfate

CBB:

Coomassie Brilliant Blue

CHCA:

α-Cyano-4-hydroxycinnamic acid

DAPI:

4′,6-Diamidino-2-phenylindole

DNase:

Deoxyribonuclease

DTT:

Dithiothreitol

EDTA:

Ethylenediaminetetraacetic acid

ESI:

Electrospray ionization

FA:

Formic acid

FSC:

Forward-scattered light

GO:

Gene ontology

HPLC:

High-performance liquid chromatography

LC-ESI-MS:

Liquid chromatography coupled to electrospray ionization mass spectrometry

LC-MALDI-MS:

Liquid chromatography coupled to matrix-assisted laser desorption/ionization mass spectrometry

LC-MS/MS:

Liquid chromatography coupled to tandem mass spectrometry

LSB:

Loading sample buffer

MALDI:

Matrix-assisted laser desorption/ionization

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

PMSF:

Phenylmethanesulfonylfluoride

SDS:

Sodium dodecyl sulfate

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

StageTip:

Stop-and-go Tip

TFA:

Trifluoroacetic acid

UHR-Q-TOF:

Ultra-high-resolution quadrupole time-of-flight mass spectrometer

References

  1. Meier I (2009) Functional organization of the plant cell nucleus. Springer, Heidelberg

    Book  Google Scholar 

  2. Erhardt M, Adamska I, Franco OL (2010) Plant nuclear proteomics – inside cell maestro. FEBS J 277:3295–3306

    Article  CAS  PubMed  Google Scholar 

  3. Petrovska B, Sebela M, Dolezel J (2015) Inside a plant nucleus: discovering the proteins. J Exp Bot 66:1627–1640

    Article  CAS  PubMed  Google Scholar 

  4. Petrovska B, Jerabkova H, Chamrad I et al (2014) Proteomic analysis of barley cell nuclei purified by flow sorting. Cytogenet Genome Res 143:78–86

    Article  CAS  PubMed  Google Scholar 

  5. The International Barley Genome Sequence Consortium (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716

    Google Scholar 

  6. Thavarajah R, Mudimbaimannar VK, Elizabeth J et al (2012) Chemical and physical basics of routine formaldehyde fixation. J Oral Maxillofac Pathol 16:400–405

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sutherland BW, Toews J, Kast J (2008) Utility of formaldehyde cross-linking and mass spectrometry in the study of protein-protein interactions. J Mass Spectrom 43:699–715

    Article  CAS  PubMed  Google Scholar 

  8. Wang F, Zhu J (1990) The effect of DNA intercalators on chromatin of chicken red blood cells – differential extraction on nonhistone proteins. Cell Res 1:105–118

    Article  Google Scholar 

  9. Orlando V, Strutt H, Paro R (1997) Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods 11:205–214

    Article  CAS  PubMed  Google Scholar 

  10. Kennedy-Darling J, Smith LM (2014) Measuring the formaldehyde protein-DNA cross-link reversal rate. Anal Chem 86:5678–5681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ngoka LC (2008) Sample prep for proteomics of breast cancer: proteomics and gene ontology reveal dramatic differences in protein solubilization preferences of radioimmunoprecipitation assay and urea lysis buffers. Proteome Sci 6:30

    Article  PubMed  PubMed Central  Google Scholar 

  12. Granvogl B, Ploscher M, Eichacker LA (2007) Sample preparation by in-gel digestion for mass spectrometry-based proteomics. Anal Bioanal Chem 389:991–1002

    Article  CAS  PubMed  Google Scholar 

  13. Perkins DN, Pappin DJ, Creasy DM et al (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567

    Article  CAS  PubMed  Google Scholar 

  14. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  15. Shevchenko A, Tomas H, Havlis J et al (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860

    Article  CAS  PubMed  Google Scholar 

  16. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2:1896–1906

    Article  CAS  PubMed  Google Scholar 

  17. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44–57

    Article  CAS  Google Scholar 

  18. Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1–13

    Article  Google Scholar 

  19. Tautvydas KJ (1971) Mass isolation onf pea nuclei. Plant Physiol 47:499–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by a grant from the National Program of Sustainability I (LO1204) from the Ministry of Education, Youth and Sports of the Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivo Chamrád .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chamrád, I. et al. (2018). Identification of Plant Nuclear Proteins Based on a Combination of Flow Sorting, SDS-PAGE, and LC-MS/MS Analysis. In: Mock, HP., Matros, A., Witzel, K. (eds) Plant Membrane Proteomics. Methods in Molecular Biology, vol 1696. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7411-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7411-5_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7409-2

  • Online ISBN: 978-1-4939-7411-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics