Skip to main content

Investigation of the Functional Retinal Output Using Microelectrode Arrays

  • Protocol
  • First Online:
Glaucoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1695))

Abstract

Microelectrode array (MEA) recordings of the ex vivo flat-mounted retina enable the functional analysis of the retinal output. The electrical activity of a large portion of retinal ganglion cells (RGCs) is recorded simultaneously in response to various light stimuli. Analysis of the recorded time series of action potentials reveals physiological parameters such as firing rate, time latency, receptive field size, axonal conduction velocity. These parameters change during retinal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Farrow K, Masland RH (2011) Physiological clustering of visual channels in the mouse retina. J Neurophysiol 105(4):1516–1530

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zeck GM, Masland RH (2007) Spike train signatures of retinal ganglion cell types. Eur J Neurosci 26(2):367–380

    Article  PubMed  Google Scholar 

  3. Stutzki H et al (2014) Inflammatory stimulation preserves physiological properties of retinal ganglion cells after optic nerve injury. Front Cell Neurosci 8:38

    Article  PubMed  PubMed Central  Google Scholar 

  4. Chichilnisky EJ (2001) A simple white noise analysis of neuronal light responses. Network 12(2):199–213

    Article  CAS  PubMed  Google Scholar 

  5. Ou Y et al (2016) Selective vulnerability of specific retinal ganglion cell types and synapses after transient ocular hypertension. J Neurosci 36(35):9240–9252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. El-Danaf RN, Huberman AD (2015) Characteristic patterns of dendritic remodeling in early-stage glaucoma: evidence from genetically identified retinal ganglion cell types. J Neurosci 35(6):2329–2343

    Article  CAS  PubMed  Google Scholar 

  7. Zeck G, Lambacher A, Fromherz P (2011) Axonal transmission in the retina introduces a small dispersion of relative timing in the ganglion cell population response. PLoS One 6(6):e20810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bakkum DJ et al (2013) Tracking axonal action potential propagation on a high-density microelectrode array across hundreds of sites. Nat Commun 4:2181

    Article  PubMed  PubMed Central  Google Scholar 

  9. Reinhard K et al (2014) Step-by-step instructions for retina recordings with perforated multi electrode arrays. PLoS One 9(8):e106148

    Article  PubMed  PubMed Central  Google Scholar 

  10. Menzler J, Channappa L, Zeck G (2014) Rhythmic ganglion cell activity in bleached and blind adult mouse retinas. PLoS One 9(8):e106047

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zeitler R, Fromherz P, Zeck G (2011) Extracellular voltage noise probes the interface between retina and silicon chip. Appl Phys Lett 99(26):263702

    Article  Google Scholar 

  12. Yger P et al (2016) Fast and accurate spike sorting in vitro and in vivo for up to thousands of electrodes. bioRxiv:067843

    Google Scholar 

  13. Rossant C et al (2016) Spike sorting for large, dense electrode arrays. Nat Neurosci 19(4):634–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Franke F et al (2010) An online spike detection and spike classification algorithm capable of instantaneous resolution of overlapping spikes. J Comput Neurosci 29(1–2):127–148

    Article  PubMed  Google Scholar 

  15. Leibig C, Wachtler T, Zeck G (2016) Unsupervised neural spike sorting for high-density microelectrode arrays with convolutive independent component analysis. J Neurosci Methods 271:1–13

    Article  PubMed  Google Scholar 

  16. Meier R et al (2008) FIND–a unified framework for neural data analysis. Neural Netw 21(8):1085–1093

    Article  PubMed  Google Scholar 

  17. Egert U et al (2002) MEA-Tools: an open source toolbox for the analysis of multi-electrode data with MATLAB. J Neurosci Methods 117(1):33–42

    Article  CAS  PubMed  Google Scholar 

  18. Della Santina L et al (2013) Differential progression of structural and functional alterations in distinct retinal ganglion cell types in a mouse model of glaucoma. J Neurosci 33(44):17444–17457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günther Zeck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zeck, G. (2018). Investigation of the Functional Retinal Output Using Microelectrode Arrays. In: Jakobs, T. (eds) Glaucoma. Methods in Molecular Biology, vol 1695. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7407-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7407-8_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7406-1

  • Online ISBN: 978-1-4939-7407-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics