Skip to main content

Visual Evoked Potentials in Glaucoma and Alzheimer’s Disease

  • Protocol
  • First Online:
Glaucoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1695))

Abstract

Visual responses to gratings alternating in contrast have been studied in humans and several mammalian species. Previous evidence from human patients and animal models of neurodegeneration has highlighted the importance to record simultaneously the pattern electroretinogram (P-ERG) and visual evoked cortical potentials (VEPs) to investigate retinal and post-retinal sites of neurodegeneration.

In view of the increasing importance of research on experimental models of neurodegenerative diseases, we present here the parametric properties of visual evoked responses in animal models of glaucoma and Alzheimer’s disease. Glaucoma and Alzheimer’s disease (AD) are two distinct multifactorial neurodegenerative and progressive diseases, primarily affecting the elderly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Riggs LA, Johnson EP, Schick AM (1964) Electrical responses of the human eye to moving stimulus patterns. Science 144(3618):567. https://doi.org/10.1126/science.144.3618.567

    Article  CAS  PubMed  Google Scholar 

  2. Sokol S, Riggs LA (1971) Electrical and psychophysical responses of the human visual system to periodic variation of luminance. Investig Ophthalmol 10(3):171–180

    CAS  Google Scholar 

  3. Sokol S (1986) Visual evoked potentials. In: Aminoff MJ (ed) Electrodiagnosis in clinical neurology, 2nd edn. Churchill Livingstone, New York

    Google Scholar 

  4. Wildberger HG, Van Lith GH, Wijngaarde R, Mak GT (1976) Visually evoked cortical potentials in the evaluation of homonymous and bitemporal visual field defects. Br J Ophthalmol 60(4):273–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Milner BA, Regan D, Heron JR (1974) Differential diagnosis of multiple sclerosis by visual evoked potential recording. Brain 97(4):755–772

    Article  CAS  PubMed  Google Scholar 

  6. Fiorentini A, Maffei L, Pirchio M, Spinelli D, Porciatti V (1981) The ERG in response to alternating gratings in patients with diseases of the peripheral visual pathway. Invest Ophthalmol Vis Sci 21(3):490–493

    CAS  PubMed  Google Scholar 

  7. Armington JC, Corwin TR, Marsetta R (1971) Simultaneously recorded retinal and cortical responses to patterned stimuli. J Opt Soc Am 61(11):1514–1521

    Article  CAS  PubMed  Google Scholar 

  8. Chen SA, Wu LZ, Wu DZ (1990) Objective measurement of contrast sensitivity using the steady-state visual evoked potential. Doc Ophthalmol 75(2):145–153

    Article  CAS  PubMed  Google Scholar 

  9. Fiorentini A, Porciatti V, Morrone MC, Burr DC (1996) Visual ageing: unspecific decline of the responses to luminance and colour. Vis Res 36(21):3557–3566

    Article  CAS  PubMed  Google Scholar 

  10. Quigley HA, Broman AT (2006) The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 90(3):262–267. https://doi.org/10.1136/bjo.2005.081224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Quigley HA (2011) Glaucoma. Lancet 377(9774):1367–1377. https://doi.org/10.1016/S0140-6736(10)61423-7

    Article  PubMed  Google Scholar 

  12. Domenici L, Origlia N, Falsini B, Cerri E, Barloscio D, Fabiani C, Sanso M, Giovannini L (2014) Rescue of retinal function by BDNF in a mouse model of glaucoma. PLoS One 9(12):e115579. https://doi.org/10.1371/journal.pone.0115579

    Article  PubMed  PubMed Central  Google Scholar 

  13. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1(1):a006189. https://doi.org/10.1101/cshperspect.a006189

    Article  PubMed  PubMed Central  Google Scholar 

  14. Braak H, Braak E (1991) Demonstration of amyloid deposits and neurofibrillary changes in whole brain sections. Brain Pathol 1(3):213–216

    Article  CAS  PubMed  Google Scholar 

  15. Braak H, Braak E (1993) Entorhinal-hippocampal interaction in mnestic disorders. Hippocampus 3 Spec No:239–246

    Google Scholar 

  16. Graw J (2017) From eyeless to neurological diseases. Exp Eye Res. https://doi.org/10.1016/j.exer.2015.11.006

  17. Hof PR, Morrison JH (1990) Quantitative analysis of a vulnerable subset of pyramidal neurons in Alzheimer’s disease: II. Primary and secondary visual cortex. J Comp Neurol 301(1):55–64. https://doi.org/10.1002/cne.903010106

    Article  CAS  PubMed  Google Scholar 

  18. Rizzo JF 3rd, Cronin-Golomb A, Growdon JH, Corkin S, Rosen TJ, Sandberg MA, Chiappa KH, Lessell S (1992) Retinocalcarine function in Alzheimer’s disease. A clinical and electrophysiological study. Arch Neurol 49(1):93–101

    Article  PubMed  Google Scholar 

  19. Crow RW, Levin LB, LaBree L, Rubin R, Feldon SE (2003) Sweep visual evoked potential evaluation of contrast sensitivity in Alzheimer's dementia. Invest Ophthalmol Vis Sci 44(2):875–878

    Article  PubMed  Google Scholar 

  20. Selkoe DJ (2002) Alzheimer's disease is a synaptic failure. Science 298:789–791

    Google Scholar 

  21. Sartucci F, Borghetti D, Bocci T, Murri L, Orsini P, Porciatti V, Origlia N, Domenici L (2010) Dysfunction of the magnocellular stream in Alzheimer's disease evaluated by pattern electroretinograms and visual evoked potentials. Brain Res Bull 82(3-4):169–176. https://doi.org/10.1016/j.brainresbull.2010.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Origlia N, Valenzano DR, Moretti M, Gotti C, Domenici L (2012) Visual acuity is reduced in alpha 7 nicotinic receptor knockout mice. Invest Ophthalmol Vis Sci 53(3):1211–1218. https://doi.org/10.1167/iovs.11-8007

    Article  CAS  PubMed  Google Scholar 

  23. Porciatti V, Pizzorusso T, Maffei L (1999) The visual physiology of the wild type mouse determined with pattern VEPs. Vis Res 39(18):3071–3081

    Article  CAS  PubMed  Google Scholar 

  24. Dawson GD (1951) A summation technique for detecting small signals in a large irregular background. J Physiol 115(1):2p–3p

    CAS  PubMed  Google Scholar 

  25. Fiorentini A, Pirchio M, Spinelli D (1983) Electrophysiological evidence for spatial frequency selective mechanisms in adults and infants. Vis Res 23(2):119–127

    Article  CAS  PubMed  Google Scholar 

  26. Banoub M, Tetzlaff JE, Schubert A (2003) Pharmacologic and physiologic influences affecting sensory evoked potentials: implications for perioperative monitoring. Anesthesiology 99(3):716–737

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The present chapter is dedicated to the memory of Dr. Adriana Fiorentini. This work is supported by the Department of Applied Clinical Sciences and Biotechnology (DISCAB), University of L’Aquila, L’Aquila, Italy and the consortium IN-BDNF. We thank Ms. S. Wilson for revising the English style.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciano Domenici .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Cerri, E., Fabiani, C., Criscuolo, C., Domenici, L. (2018). Visual Evoked Potentials in Glaucoma and Alzheimer’s Disease. In: Jakobs, T. (eds) Glaucoma. Methods in Molecular Biology, vol 1695. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7407-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7407-8_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7406-1

  • Online ISBN: 978-1-4939-7407-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics