Skip to main content

Hypertonic Saline Injection Model of Experimental Glaucoma in Rats

  • Protocol
  • First Online:
Glaucoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1695))

Abstract

A reliable method of creating chronic elevation of intraocular pressure (IOP) in rodents is an important tool in reproducing and studying the mechanisms of optic nerve injury that occur in glaucoma. In addition, such a model could provide a valuable method for testing potential neuroprotective treatments. This paper outlines the basic methods for producing obstruction of aqueous humor outflow and IOP elevation by injecting hypertonic saline (a sclerosant) into the aqueous outflow pathway. This is one of several rodent glaucoma models in use today. In this method, a plastic ring is placed around the equator of the eye to restrict injected saline to the limbus. By inserting a small glass microneedle in an aqueous outflow vein in the episclera and injecting hypertonic saline toward the limbus, the saline is forced into Schlemm’s canal and across the trabecular meshwork. The resultant inflammation and scarring of the anterior chamber angle occurs gradually, resulting in a rise in IOP after approximately 1 week. This article will describe the equipment necessary for producing this model and the steps of the technique itself.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ueda J, Sawaguchi S, Hanyu T, Yaoeda K, Fukuchi T, Abe H, Ozawa H (1998) Experimental glaucoma model in the rat induced by laser trabecular photocoagulation after an intracameral injection of India ink. Jpn J Ophthalmol 42(5):337–344

    Article  CAS  PubMed  Google Scholar 

  2. Salinas-Navarro M, Alarcon-Martinez L, Valiente-Soriano FJ, Ortin-Martinez A, Jimenez-Lopez M, Aviles-Trigueros M, Villegas-Perez MP, de la Villa P, Vidal-Sanz M (2009) Functional and morphological effects of laser-induced ocular hypertension in retinas of adult albino Swiss mice. Mol Vis 15:2578–2598

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Park KH, Cozier F, Ong OC, Caprioli J (2001) Induction of heat shock protein 72 protects retinal ganglion cells in a rat glaucoma model. Invest Ophthalmol Vis Sci 42(7):1522–1530

    CAS  PubMed  Google Scholar 

  4. Levkovitch-Verbin H, Quigley HA, Martin KR, Valenta D, Baumrind LA, Pease ME (2002) Translimbal laser photocoagulation to the trabecular meshwork as a model of glaucoma in rats. Invest Ophthalmol Vis Sci 43(2):402–410

    PubMed  Google Scholar 

  5. Gross RL, Ji J, Chang P, Pennesi ME, Yang Z, Zhang J, Wu SM (2003) A mouse model of elevated intraocular pressure: retina and optic nerve findings. Trans Am Ophthalmol Soc 101:163–169. discussion 169-171

    PubMed  PubMed Central  Google Scholar 

  6. Aihara M, Lindsey JD, Weinreb RN (2003) Experimental mouse ocular hypertension: establishment of the model. Invest Ophthalmol Vis Sci 44(10):4314–4320

    Article  PubMed  Google Scholar 

  7. Weber AJ, Zelenak D (2001) Experimental glaucoma in the primate induced by latex microspheres. J Neurosci Methods 111(1):39–48

    Article  CAS  PubMed  Google Scholar 

  8. Cone FE, Gelman SE, Son JL, Pease ME, Quigley HA (2010) Differential susceptibility to experimental glaucoma among 3 mouse strains using bead and viscoelastic injection. Exp Eye Res 91(3):415–424. https://doi.org/10.1016/j.exer.2010.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Samsel PA, Kisiswa L, Erichsen JT, Cross SD, Morgan JE (2011) A novel method for the induction of experimental glaucoma using magnetic microspheres. Invest Ophthalmol Vis Sci 52(3):1671–1675. https://doi.org/10.1167/iovs.09-3921

    Article  CAS  PubMed  Google Scholar 

  10. Sappington RM, Carlson BJ, Crish SD, Calkins DJ (2010) The microbead occlusion model: a paradigm for induced ocular hypertension in rats and mice. Invest Ophthalmol Vis Sci 51(1):207–216. https://doi.org/10.1167/iovs.09-3947

    Article  PubMed  PubMed Central  Google Scholar 

  11. Morrison JC, Fraunfelder FW, Milne ST, Moore CG (1995) Limbal microvasculature of the rat eye. Invest Ophthalmol Vis Sci 36(3):751–756

    CAS  PubMed  Google Scholar 

  12. Morrison JC, Moore CG, Deppmeier LM, Gold BG, Meshul CK, Johnson EC (1997) A rat model of chronic pressure-induced optic nerve damage. Exp Eye Res 64(1):85–96. https://doi.org/10.1006/exer.1996.0184

    Article  CAS  PubMed  Google Scholar 

  13. Jia L, Cepurna WO, Johnson EC, Morrison JC (2000) Patterns of intraocular pressure elevation after aqueous humor outflow obstruction in rats. Invest Ophthalmol Vis Sci 41(6):1380–1385

    CAS  PubMed  Google Scholar 

  14. Fortune B, Bui BV, Morrison JC, Johnson EC, Dong J, Cepurna WO, Jia L, Barber S, Cioffi GA (2004) Selective loss of the electroretinogram scotopic threshold response (STR) at low levels of elevated intraocular pressure in a rat model of experimental glaucoma. Invest Ophthalmol Vis Sci 45(supplement 2):U146

    Google Scholar 

  15. Guo Y, Cepurna WO, Dyck JA, Doser TA, Johnson EC, Morrison JC (2010) Retinal cell responses to elevated intraocular pressure: a gene array comparison between the whole retina and retinal ganglion cell layer. Invest Ophthalmol Vis Sci 51(6):3003–3018. https://doi.org/10.1167/iovs.09-4663

    Article  PubMed  PubMed Central  Google Scholar 

  16. Guo Y, Johnson EC, Cepurna WO, Dyck JA, Doser T, Morrison JC (2011) Early gene expression changes in the retinal ganglion cell layer of a rat glaucoma model. Invest Ophthalmol Vis Sci 52(3):1460–1473. https://doi.org/10.1167/iovs.10-5930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Johnson EC, Doser TA, Cepurna WO, Dyck JA, Jia L, Guo Y, Lambert WS, Morrison JC (2011) Cell proliferation and interleukin-6-type cytokine signaling are implicated by gene expression responses in early optic nerve head injury in rat glaucoma. Invest Ophthalmol Vis Sci 52(1):504–518. https://doi.org/10.1167/iovs.10-5317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Johnson EC, Jia L, Cepurna WO, Doser TA, Morrison JC (2007) Global changes in optic nerve head gene expression after exposure to elevated intraocular pressure in a rat glaucoma model. Invest Ophthalmol Vis Sci 48(7):3161–3177. https://doi.org/10.1167/iovs.06-1282

    Article  PubMed  PubMed Central  Google Scholar 

  19. Morrison JC, Cepurna Ying Guo WO, Johnson EC (2011) Pathophysiology of human glaucomatous optic nerve damage: insights from rodent models of glaucoma. Exp Eye Res 93(2):156–164. https://doi.org/10.1016/j.exer.2010.08.005

    Article  CAS  PubMed  Google Scholar 

  20. Morrison JC, Johnson E, Cepurna WO (2008) Rat models for glaucoma research. Prog Brain Res 173:285–301. https://doi.org/10.1016/S0079-6123(08)01121-7

    Article  PubMed  Google Scholar 

  21. Morrison JC, Johnson EC, Cepurna W, Jia L (2005) Understanding mechanisms of pressure-induced optic nerve damage. Prog Retin Eye Res 24(2):217–240. https://doi.org/10.1016/j.preteyeres.2004.08.003

    Article  PubMed  Google Scholar 

  22. Morrison JC, Cepurna WO, Johnson EC (2015) Modeling glaucoma in rats by sclerosing aqueous outflow pathways to elevate intraocular pressure. Exp Eye Res 141:23–32. https://doi.org/10.1016/j.exer.2015.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pang IH, Clark AF (2007) Rodent models for glaucoma retinopathy and optic neuropathy. J Glaucoma 16(5):483–505. https://doi.org/10.1097/IJG.0b013e3181405d4f

    Article  PubMed  Google Scholar 

  24. Wang WH, Millar JC, Pang IH, Wax MB, Clark AF (2005) Noninvasive measurement of rodent intraocular pressure with a rebound tonometer. Invest Ophthalmol Vis Sci 46(12):4617–4621. https://doi.org/10.1167/iovs.05-0781

    Article  PubMed  Google Scholar 

  25. Chauhan BC, Levatte TL, Garnier KL, Tremblay F, Pang IH, Clark AF, Archibald ML (2006) Semiquantitative optic nerve grading scheme for determining axonal loss in experimental optic neuropathy. Invest Ophthalmol Vis Sci 47(2):634–640. https://doi.org/10.1167/iovs.05-1206

    Article  PubMed  Google Scholar 

  26. Morrison JC, Jia L, Cepurna W, Guo Y, Johnson E (2009) Reliability and sensitivity of the TonoLab rebound tonometer in awake Brown Norway rats. Invest Ophthalmol Vis Sci 50(6):2802–2808. https://doi.org/10.1167/iovs.08-2465

    Article  PubMed  PubMed Central  Google Scholar 

  27. Moore CG, Johnson EC, Morrison JC (1996) Circadian rhythm of intraocular pressure in the rat. Curr Eye Res 15(2):185–191

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The National Institutes of Health Grants: R01EY010145 (JCM), P30EY010572 (OHSU Core Grant) and an unrestricted grant from Research to Prevent Blindness (RPB), Inc. JCM is a past RPB Senior Investigator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Morrison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Morrison, J.C., Johnson, E.C., Cepurna, W.O. (2018). Hypertonic Saline Injection Model of Experimental Glaucoma in Rats. In: Jakobs, T. (eds) Glaucoma. Methods in Molecular Biology, vol 1695. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7407-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7407-8_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7406-1

  • Online ISBN: 978-1-4939-7407-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics