Skip to main content

Visualizing Astrocytes of the Optic Nerve

  • Protocol
  • First Online:
Glaucoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1695))

Abstract

Astrocytes make up approximately 30% of all the cells in the mammalian central nervous system. They are not passive, as once thought, but are integral to brain physiology and perform many functions that are important for normal neuronal development and metabolism, synapse formation, synaptic transmission, and in repair following injury/disease. Astrocytes also communicate with neurons, blood vessels, and other types of glial cells. Astrocytes within the optic nerve head region play a key role in glaucomatous axon degeneration. In this chapter, we describe ways in which astrocytes of the optic nerve head can be visualized, beginning with basic immunohistochemical staining methods, to single-cell dye injections and then to transgenic animals. We will also discuss the pros and cons of each method. Many of the methods were initially developed to visualize brain astrocytes; in some cases, the method has translated well to astrocytes of the optic nerve, and in others, it remains unclear.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35. https://doi.org/10.1007/s00401-009-0619-8

    Article  PubMed  Google Scholar 

  2. Chung W-S, Allen NJ, Eroglu C (2015) Astrocytes control synapse formation, function, and elimination. Cold Spring Harb Perspect Biol 7:a020370. https://doi.org/10.1101/cshperspect.a020370

    Article  PubMed  PubMed Central  Google Scholar 

  3. Iadecola C, Nedergaard M (2007) Glial regulation of the cerebral microvasculature. Nat Neurosci 10:1369–1376. https://doi.org/10.1038/nn2003

    Article  CAS  PubMed  Google Scholar 

  4. Simard M, Nedergaard M (2004) The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 129:877–896. https://doi.org/10.1016/j.neuroscience.2004.09.053

    Article  CAS  PubMed  Google Scholar 

  5. Pellerin L, Bouzier-Sore A-K, Aubert A, Serres S, Merle M, Costalat R, Magistretti PJ (2007) Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia 55:1251–1262. https://doi.org/10.1002/glia.20528

    Article  PubMed  Google Scholar 

  6. Rouach N, Koulakoff A, Abudara V, Willecke K, Giaume C (2008) Astroglial metabolic networks sustain hippocampal synaptic transmission. Science 322:1–5. https://doi.org/10.1126/science.1164022

    Article  Google Scholar 

  7. Robel S, Berninger B, Götz M (2011) The stem cell potential of glia: lessons from reactive gliosis. Nat Rev Neurosci 12:88–104. https://doi.org/10.1038/nrn2978

    Article  CAS  PubMed  Google Scholar 

  8. Khakh BS, McCarthy KD (2015) Astrocyte calcium signaling: from observations to functions and the challenges therein. Cold Spring Harb Perspect Biol 7:a020404. https://doi.org/10.1101/cshperspect.a020404

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bazargani N, Attwell D (2016) Astrocyte calcium signaling: the third wave. Nat Neurosci 19:182–189. https://doi.org/10.1038/nn.4201

    Article  CAS  PubMed  Google Scholar 

  10. Sofroniew MV (2009) Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci 32:638–647. https://doi.org/10.1016/j.tins.2009.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Silver J, Miller JH (2004) Regeneration beyond the glial scar. Nat Rev Neurosci 5:146–156. https://doi.org/10.1038/nrn1326

    Article  CAS  PubMed  Google Scholar 

  12. Anderson MA, Burda JE, Ren Y, Ao Y, O’Shea TM, Kawaguchi R, Coppola G, Khakh BS, Deming TJ, Sofroniew MV (2016) Astrocyte scar formation aids central nervous system axon regeneration. Nature 532(7598):195–200. https://doi.org/10.1038/nature17623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Anderson MA, Ao Y, Sofroniew MV (2014) Heterogeneity of reactive astrocytes. Neurosci Lett 565:23–29. https://doi.org/10.1016/j.neulet.2013.12.030

    Article  CAS  PubMed  Google Scholar 

  14. Okada S, Nakamura M, Katoh H, Miyao T, Shimazaki T, Ishii K, Yamane J, Yoshimura A, Iwamoto Y, Toyama Y, Okano H (2006) Conditional ablation of Stat3 or Socs3 discloses a dual role for reactive astrocytes after spinal cord injury. Nat Med 12:829–834. https://doi.org/10.1038/nm1425

    Article  CAS  PubMed  Google Scholar 

  15. Wanner IB, Anderson MA, Song B, Levine J, Fernandez A, Gray-Thompson Z, Ao Y, Sofroniew MV (2013) Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J Neurosci 33:12870–12886. https://doi.org/10.1523/JNEUROSCI.2121-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Voskuhl RR, Peterson RS, Song B, Ao Y, Morales LBJ, Tiwari-Woodruff S, Sofroniew MV (2009) Reactive astrocytes form scar-like perivascular barriers to leukocytes during adaptive immune inflammation of the CNS. J Neurosci 29:11511–11522. https://doi.org/10.1523/JNEUROSCI.1514-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Herrmann JE, Imura T, Song B, Qi J, Ao Y, Nguyen TK, Korsak RA, Takeda K, Akira S, Sofroniew MV (2008) STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J Neurosci 28:7231–7243. https://doi.org/10.1523/JNEUROSCI.1709-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV (2004) Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci 24:2143–2155. https://doi.org/10.1523/JNEUROSCI.3547-03.2004

    Article  CAS  PubMed  Google Scholar 

  19. Zhang Y, Barres BA (2010) Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr Opin Neurobiol 20:588–594. https://doi.org/10.1016/j.conb.2010.06.005

    Article  CAS  PubMed  Google Scholar 

  20. Howell GR, Libby RT, Jakobs TC, Smith RS, Phalan FC, Barter JW, Barbay JM, Marchant JK, Mahesh N, Porciatti V, Whitmore AV, Masland RH, John SWM (2007) Axons of retinal ganglion cells are insulted in the optic nerve early in DBA/2J glaucoma. J Cell Biol 179:1523–1537. https://doi.org/10.1083/jcb.200706181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Buckingham BP, Inman DM, Lambert W, Oglesby E, Calkins DJ, Steele MR, Vetter ML, Marsh-Armstrong N, Horner PJ (2008) Progressive ganglion cell degeneration precedes neuronal loss in a mouse model of glaucoma. J Neurosci 28:2735–2744. https://doi.org/10.1523/JNEUROSCI.4443-07.2008

    Article  CAS  PubMed  Google Scholar 

  22. Soto I, Oglesby E, Buckingham BP, Son JL, Roberson EDO, Steele MR, Inman DM, Vetter ML, Horner PJ, Marsh-Armstrong N (2008) Retinal ganglion cells downregulate gene expression and lose their axons within the optic nerve head in a mouse glaucoma model. J Neurosci 28:548–561. https://doi.org/10.1523/JNEUROSCI.3714-07.2008

    Article  CAS  PubMed  Google Scholar 

  23. Sun D, Lye-Barthel M, Masland RH, Jakobs TC (2009) The morphology and spatial arrangement of astrocytes in the optic nerve head of the mouse. J Comp Neurol 516:1–19. https://doi.org/10.1002/cne.22058

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bushong EA, Martone ME, Jones YZ, Ellisman MH (2002) Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci 22:183–192

    CAS  PubMed  Google Scholar 

  25. Sun D, Lye-Barthel M, Masland RH, Jakobs TC (2010) Structural remodeling of fibrous astrocytes after axonal injury. J Neurosci 30:14008–14019. https://doi.org/10.1523/JNEUROSCI.3605-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Oberheim NA, Wang X, Goldman S, Nedergaard M (2006) Astrocytic complexity distinguishes the human brain. Trends Neurosci 29:547–553. https://doi.org/10.1016/j.tins.2006.08.004

    Article  CAS  PubMed  Google Scholar 

  27. Connor JR, Berkowitz EM (1985) A demonstration of glial filament distribution in astrocytes isolated from rat cerebral cortex. Neuroscience 16:33–44

    Article  CAS  PubMed  Google Scholar 

  28. Maxwell DS, Kruger L (1965) The fine structure of astrocytes in the cerebral cortex and their response to focal injury produced by heavy ionizing particles. J Cell Biol 25:141–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL, Christopherson KS, Xing Y, Lubischer JL, Krieg PA, Krupenko SA, Thompson WJ, Barres BA (2008) A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J Neurosci 28:264–278. https://doi.org/10.1523/JNEUROSCI.4178-07.2008

    Article  CAS  PubMed  Google Scholar 

  30. Chaudhry FA, Lehre KP, van Lookeren CM, Ottersen OP, Danbolt NC, Storm-Mathisen J (1995) Glutamate transporters in glial plasma membranes: highly differentiated localizations revealed by quantitative ultrastructural immunocytochemistry. Neuron 15:711–720

    Article  CAS  PubMed  Google Scholar 

  31. Lehre KP, Levy LM, Ottersen OP, Storm-Mathisen J, Danbolt NC (1995) Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J Neurosci 15:1835–1853

    CAS  PubMed  Google Scholar 

  32. Schmitt A, Asan E, Püschel B, Kugler P (1997) Cellular and regional distribution of the glutamate transporter GLAST in the CNS of rats: nonradioactive in situ hybridization and comparative immunocytochemistry. J Neurosci 17:1–10

    CAS  PubMed  Google Scholar 

  33. Vives V, Alonso G, Solal AC, Joubert D, Legraverend C (2003) Visualization of S100B-positive neurons and glia in the central nervous system of EGFP transgenic mice. J Comp Neurol 457:404–419. https://doi.org/10.1002/cne.10552

    Article  CAS  PubMed  Google Scholar 

  34. Deloulme JC, Raponi E, Gentil BJ, Bertacchi N, Marks A, Labourdette G, Baudier J (2004) Nuclear expression of S100B in oligodendrocyte progenitor cells correlates with differentiation toward the oligodendroglial lineage and modulates oligodendrocytes maturation. Mol Cell Neurosci 27:453–465. https://doi.org/10.1016/j.mcn.2004.07.008

    Article  CAS  PubMed  Google Scholar 

  35. Hachem S, Aguirre A, Vives V, Marks A, Gallo V, Legraverend C (2005) Spatial and temporal expression of S100B in cells of oligodendrocyte lineage. Glia 51:81–97. https://doi.org/10.1002/glia.20184

    Article  CAS  PubMed  Google Scholar 

  36. Steiner J, Bernstein H-G, Bielau H, Berndt A, Brisch R, Mawrin C, Keilhoff G, Bogerts B (2007) 1471-2202-8-2.fm. BMC Neurosci 8:2–10. https://doi.org/10.1186/1471-2202-8-2

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wilhelmsson U, Bushong EA, Price DL, Smarr BL, Phung V, Terada M, Ellisman MH, Pekny M (2006) Redefining the concept of reactive astrocytes as cells that remain within their unique domains upon reaction to injury. Proc Natl Acad Sci U S A 103:17513–17518. https://doi.org/10.1073/pnas.0602841103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Butt A, Colquhoun K (1996) Glial cells in transected optic nerves of immature rats. I. An analysis of individual cells by intracellular dye-injection. J Neurocytol 25(1):365–380

    Article  CAS  PubMed  Google Scholar 

  39. Ju W-K, Kim K-Y, Noh YH, Hoshijima M, Lukas TJ, Ellisman MH, Weinreb RN, Perkins GA (2015) Increased mitochondrial fission and volume density by blocking glutamate excitotoxicity protect glaucomatous optic nerve head astrocytes. Glia 63:736–753. https://doi.org/10.1002/glia.22781

    Article  PubMed  Google Scholar 

  40. Lo DC, McAllister AK, Katz LC (1994) Neuronal transfection in brain slices using particle-mediated gene transfer. Neuron 13(6):1263–1268

    Article  CAS  PubMed  Google Scholar 

  41. Nolte C, Matyash M, Pivneva T, Schipke CG, Ohlemeyer C, Hanisch UK, Kirchhoff F, Kettenmann H (2001) GFAP promoter-controlled EGFP-expressing transgenic mice: a tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 33:72–86

    Article  CAS  PubMed  Google Scholar 

  42. Zhuo L, Sun B, Zhang CL, Fine A, Chiu SY, Messing A (1997) Live astrocytes visualized by green fluorescent protein in transgenic mice. Dev Biol 187(1):36–42

    Article  CAS  PubMed  Google Scholar 

  43. Suzuki R, Watanabe J, Arata S, Funahashi H, Kikuyama S, Shioda S (2003) A transgenic mouse model for the detailed morphological study of astrocytes. Neurosci Res 47(4):451–454

    Article  CAS  PubMed  Google Scholar 

  44. Livet J, Weissman TA, Kang H, Draft RW, Lu J, Bennis RA, Sanes JR, Lichtman JW (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–62. https://doi.org/10.1038/nature06293

    Article  CAS  PubMed  Google Scholar 

  45. Yamaguchi M, Saito H, Suzuki M, Mori K (2000) Visualization of neurogenesis in the central nervous system using nestin promoter-GFP transgenic mice. Neuroreport 11(9):1991–1996

    Article  CAS  PubMed  Google Scholar 

  46. Yang Y, Vidensky S, Jin L, Jie C, Lorenzini I, Frankl M, Rothstein JD (2011) Molecular comparison of GLT1+ and ALDH1L1+ astrocytes in vivo in astroglial reporter mice. Glia 59:200–207. https://doi.org/10.1002/glia.21089

    Article  PubMed  PubMed Central  Google Scholar 

  47. Regan MR, Huang YH, Kim YS, Dykes-Hoberg MI, Jin L, Watkins AM et al (2007) Variations in promoter activity reveal a differential expression and physiology of glutamate transporters by glia in the developing and mature CNS. J Neurosci 27(25):6607–6619

    Article  CAS  PubMed  Google Scholar 

  48. Heintz N (2004) Nat neurosci 2004 heintz. Nat Neurosci 7:1–1. https://doi.org/10.1038/nn0504-483

    Article  Google Scholar 

  49. Doyle JP, Dougherty JD, Heiman M, Schmidt EF, Stevens TR, Ma G et al (2008) Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135(4):749–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lichtman JW, Livet J, Sanes JR (2008) A technicolour approach to the connectome. Nat Rev Neurosci 9:417–422. https://doi.org/10.1038/nrn2391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Cai D, Cohen KB, Luo T, Lichtman JW, Sanes JR (2013) Improved tools for the Brainbow toolbox. Nat Methods 10:540–547. https://doi.org/10.1038/nmeth.2450

    Article  CAS  PubMed Central  Google Scholar 

  52. Wang J, O'Sullivan ML, Mukherjee D, Puñal VM, Farsiu S, Kay JN (2016) Anatomy and spatial organization of Müller glia in mouse retina. J Comp Neurol 525(8):1759–1777. https://doi.org/10.1002/cne.24153

    Article  Google Scholar 

  53. Dumas L, Heitz-Marchaland C, Fouquet S, Suter U, Livet J, Moreau-Fauvarque C, Chédotal A (2015) Multicolor analysis of oligodendrocyte morphology, interactions, and development with Brainbow. Glia 63:699–717. https://doi.org/10.1002/glia.22779

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Sun Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sun, D. (2018). Visualizing Astrocytes of the Optic Nerve. In: Jakobs, T. (eds) Glaucoma. Methods in Molecular Biology, vol 1695. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7407-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7407-8_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7406-1

  • Online ISBN: 978-1-4939-7407-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics