Skip to main content

Methods for Analyzing Endoplasmic Reticulum Stress in the Trabecular Meshwork of Glaucoma Models

  • Protocol
  • First Online:
Glaucoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1695))

Abstract

The pathological mechanisms underlying increased outflow resistance at the trabecular meshwork (TM) that is responsible for elevating intraocular pressure (IOP) have not been fully delineated. Recent studies have shown that progressive accumulation of misfolded proteins and induction of endoplasmic reticulum (ER) stress is associated with the pathophysiology of glaucomatous TM damage and IOP elevation. We have shown that known causes of human glaucoma, including expression of mutant myocilin or dexamethasone treatment induce abnormal protein accumulation and ER stress in the TM in vitro and in vivo models. To cope up with abnormal protein accumulation, TM cells activate a cytoprotective pathway of unfolded protein response (UPR). However, chronic ER stress can lead to TM dysfunction and IOP elevation. Using cell culture, mouse models, and human postmortem tissues as well as genetic and pharmacological manipulations, we have analyzed ER stress and UPR mediators in the glaucomatous TM damage and IOP elevation. In this chapter, we have described a detailed protocol for the analysis of protein misfolding and ER stress in TM cells and tissues and its association with glaucomatous TM damage and IOP elevation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yoshida H (2007) ER stress and diseases. FEBS J 274(3):630–658. https://doi.org/10.1111/j.1742-4658.2007.05639.x

    Article  CAS  PubMed  Google Scholar 

  2. Schroder M, Kaufman RJ (2005) The mammalian unfolded protein response. Annu Rev Biochem 74:739–789. https://doi.org/10.1146/annurev.biochem.73.011303.074134

    Article  PubMed  Google Scholar 

  3. Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8(7):519–529. https://doi.org/10.1038/nrm2199

    Article  CAS  PubMed  Google Scholar 

  4. Calfon M, Zeng H, Urano F, Till JH, Hubbard SR, Harding HP, Clark SG, Ron D (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415(6867):92–96. https://doi.org/10.1038/415092a

    Article  CAS  PubMed  Google Scholar 

  5. Schroder M, Kaufman RJ (2006) Divergent roles of IRE1alpha and PERK in the unfolded protein response. Curr Mol Med 6(1):5–36

    Article  CAS  PubMed  Google Scholar 

  6. Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107(7):881–891

    Article  CAS  PubMed  Google Scholar 

  7. Yoshida H (2004) Molecular biology of the ER stress response. Seikagaku 76(7):617–630

    CAS  PubMed  Google Scholar 

  8. Yoshida H (2007) Unconventional splicing of XBP-1 mRNA in the unfolded protein response. Antioxid Redox Signal 9(12):2323–2333. https://doi.org/10.1089/ars.2007.1800

    Article  CAS  PubMed  Google Scholar 

  9. Acosta-Alvear D, Zhou Y, Blais A, Tsikitis M, Lents NH, Arias C, Lennon CJ, Kluger Y, Dynlacht BD (2007) XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol Cell 27(1):53–66. https://doi.org/10.1016/j.molcel.2007.06.011

    Article  CAS  PubMed  Google Scholar 

  10. Wu J, Rutkowski DT, Dubois M, Swathirajan J, Saunders T, Wang J, Song B, Yau GD, Kaufman RJ (2007) ATF6alpha optimizes long-term endoplasmic reticulum function to protect cells from chronic stress. Dev Cell 13(3):351–364. https://doi.org/10.1016/j.devcel.2007.07.005

    Article  CAS  PubMed  Google Scholar 

  11. Shen J, Chen X, Hendershot L, Prywes R (2002) ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 3(1):99–111

    Article  CAS  PubMed  Google Scholar 

  12. Wang Y, Shen J, Arenzana N, Tirasophon W, Kaufman RJ, Prywes R (2000) Activation of ATF6 and an ATF6 DNA binding site by the endoplasmic reticulum stress response. J Biol Chem 275(35):27013–27020. https://doi.org/10.1074/jbc.M003322200

    CAS  PubMed  Google Scholar 

  13. Haze K, Yoshida H, Yanagi H, Yura T, Mori K (1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10(11):3787–3799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Adachi Y, Yamamoto K, Okada T, Yoshida H, Harada A, Mori K (2008) ATF6 is a transcription factor specializing in the regulation of quality control proteins in the endoplasmic reticulum. Cell Struct Funct 33(1):75–89

    Article  CAS  PubMed  Google Scholar 

  15. Rutkowski DT, Arnold SM, Miller CN, Wu J, Li J, Gunnison KM, Mori K, Sadighi Akha AA, Raden D, Kaufman RJ (2006) Adaptation to ER stress is mediated by differential stabilities of pro-survival and pro-apoptotic mRNAs and proteins. PLoS Biol 4(11):e374. https://doi.org/10.1371/journal.pbio.0040374

    Article  PubMed  PubMed Central  Google Scholar 

  16. Rutkowski DT, Wu J, Back SH, Callaghan MU, Ferris SP, Iqbal J, Clark R, Miao H, Hassler JR, Fornek J, Katze MG, Hussain MM, Song B, Swathirajan J, Wang J, Yau GD, Kaufman RJ (2008) UPR pathways combine to prevent hepatic steatosis caused by ER stress-mediated suppression of transcriptional master regulators. Dev Cell 15(6):829–840. https://doi.org/10.1016/j.devcel.2008.10.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11(4):381–389. https://doi.org/10.1038/sj.cdd.4401373

    Article  CAS  PubMed  Google Scholar 

  18. Zode GS, Bugge KE, Mohan K, Grozdanic SD, Peters JC, Koehn DR, Anderson MG, Kardon RH, Stone EM, Sheffield VC (2012) Topical ocular sodium 4-phenylbutyrate rescues glaucoma in a myocilin mouse model of primary open-angle glaucoma. Invest Ophthalmol Vis Sci 53(3):1557–1565. https://doi.org/10.1167/iovs.11-8837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zode GS, Kuehn MH, Nishimura DY, Searby CC, Mohan K, Grozdanic SD, Bugge K, Anderson MG, Clark AF, Stone EM, Sheffield VC (2011) Reduction of ER stress via a chemical chaperone prevents disease phenotypes in a mouse model of primary open angle glaucoma. J Clin Invest 121(9):3542–3553. https://doi.org/10.1172/JCI58183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zode GS, Sharma AB, Lin X, Searby CC, Bugge K, Kim GH, Clark AF, Sheffield VC (2014) Ocular-specific ER stress reduction rescues glaucoma in murine glucocorticoid-induced glaucoma. J Clin Invest 124(5):1956–1965. https://doi.org/10.1172/JCI69774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Peters JC, Bhattacharya S, Clark AF, Zode GS (2015) Increased endoplasmic reticulum stress in human glaucomatous trabecular meshwork cells and tissues. Invest Ophthalmol Vis Sci 56(6):3860–3868. https://doi.org/10.1167/iovs.14-16220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sohn S, Joe MK, Kim TE, Im JE, Choi YR, Park H, Kee C (2009) Dual localization of wild-type myocilin in the endoplasmic reticulum and extracellular compartment likely occurs due to its incomplete secretion. Mol Vis 15:545–556

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Tamm ER (2002) Myocilin and glaucoma: facts and ideas. Prog Retin Eye Res 21(4):395–428

    Article  CAS  PubMed  Google Scholar 

  24. Liu Y, Vollrath D (2004) Reversal of mutant myocilin non-secretion and cell killing: implications for glaucoma. Hum Mol Genet 13(11):1193–1204. https://doi.org/10.1093/hmg/ddh128

    Article  CAS  PubMed  Google Scholar 

  25. Jacobson N, Andrews M, Shepard AR, Nishimura D, Searby C, Fingert JH, Hageman G, Mullins R, Davidson BL, Kwon YH, Alward WL, Stone EM, Clark AF, Sheffield VC (2001) Non-secretion of mutant proteins of the glaucoma gene myocilin in cultured trabecular meshwork cells and in aqueous humor. Hum Mol Genet 10(2):117–125

    Article  CAS  PubMed  Google Scholar 

  26. Gobeil S, Rodrigue MA, Moisan S, Nguyen TD, Polansky JR, Morissette J, Raymond V (2004) Intracellular sequestration of hetero-oligomers formed by wild-type and glaucoma-causing myocilin mutants. Invest Ophthalmol Vis Sci 45(10):3560–3567. https://doi.org/10.1167/iovs.04-0300

    Article  PubMed  Google Scholar 

  27. Joe MK, Sohn S, Hur W, Moon Y, Choi YR, Kee C (2003) Accumulation of mutant myocilins in ER leads to ER stress and potential cytotoxicity in human trabecular meshwork cells. Biochem Biophys Res Commun 312(3):592–600. https://doi.org/10.1016/j.bbrc.2003.10.162

    Article  CAS  PubMed  Google Scholar 

  28. Anholt RR, Carbone MA (2013) A molecular mechanism for glaucoma: endoplasmic reticulum stress and the unfolded protein response. Trends Mol Med 19(10):586–593. https://doi.org/10.1016/j.molmed.2013.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yam GH, Gaplovska-Kysela K, Zuber C, Roth J (2007) Aggregated myocilin induces russell bodies and causes apoptosis: implications for the pathogenesis of myocilin-caused primary open-angle glaucoma. Am J Pathol 170(1):100–109. https://doi.org/10.2353/ajpath.2007.060806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jones R 3rd, Rhee DJ (2006) Corticosteroid-induced ocular hypertension and glaucoma: a brief review and update of the literature. Curr Opin Ophthalmol 17(2):163–167. https://doi.org/10.1097/01.icu.0000193079.55240.18

    PubMed  Google Scholar 

  31. Clark AF, Wordinger RJ (2009) The role of steroids in outflow resistance. Exp Eye Res 88(4):752–759. https://doi.org/10.1016/j.exer.2008.10.004

    Article  CAS  PubMed  Google Scholar 

  32. Armaly MF, Becker B (1965) Intraocular pressure response to topical corticosteroids. Fed Proc 24(6):1274–1278

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by funding from the following grants and organizations: National Eye Institute, EY022077 (R00) and EY026177 (R01) to G. S. Zode and funding from the North Texas Eye Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulab S. Zode .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Maddineni, P., Kasetti, R.B., Zode, G.S. (2018). Methods for Analyzing Endoplasmic Reticulum Stress in the Trabecular Meshwork of Glaucoma Models. In: Jakobs, T. (eds) Glaucoma. Methods in Molecular Biology, vol 1695. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7407-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7407-8_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7406-1

  • Online ISBN: 978-1-4939-7407-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics