Skip to main content

Virtual Screening in the Search of New and Potent Anti-Alzheimer Agents

  • Protocol
  • First Online:
Computational Modeling of Drugs Against Alzheimer’s Disease

Part of the book series: Neuromethods ((NM,volume 132))

Abstract

Alzheimer’s disease (AD) is a multifaceted neurodegenerative disorder for which there is no cure, but only symptomatic drugs are available. Most of the scientific efforts are addressed toward the employment of computational approaches able to speed up the discovery of putative anti-AD drugs. Among these, virtual screening allows to select very quickly and at extremely low cost compounds endowed with optimum physicochemical, pharmacokinetic, and biological properties to develop new potential drugs. This chapter presents recent works on the use of virtual screening for the design of specific ligands of targets related with AD, most of which were subsequently validated by experimental assays.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roberson E, Mucke L (2006) 100 years and counting: prospects for defeating Alzheimer’s disease. Science 314:781–784

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Cavalli A, Bolognesi ML, Minarini A et al (2008) Multi-target-directed ligands to combat neurodegenerative diseases. J Med Chem 51:347–372

    Article  CAS  PubMed  Google Scholar 

  3. Stahl M, Markowitz JS, Gutterman EM et al (2003) Co-use of donepezil and hypnotics among Alzheimer’s disease patients living in the community. J Clin Psychiatry 64:466–467

    Article  CAS  PubMed  Google Scholar 

  4. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766

    CAS  PubMed  Google Scholar 

  5. Hussain I (2004) The potential for BACE-1 inhibitors in the treatment of Alzheimer’s disease. IDrugs 7:653–658

    CAS  PubMed  Google Scholar 

  6. Hills ID, Vacca JP (2007) Progress toward a practical BACE-1 inhibitor. Curr Opin Drug Discov Devel 10:383–391

    CAS  PubMed  Google Scholar 

  7. Walsh DM, Selkoe DJ (2007) A beta oligomers – a decade of discovery. J Neurochem 101:1172–1184

    Article  CAS  PubMed  Google Scholar 

  8. Cummings JL (2004) Alzheimer’s disease. N Engl J Med 351:56–67

    Article  CAS  PubMed  Google Scholar 

  9. Hawkes CA, Ng V, MacLaurin J (2009) Small molecule inhibitors of aβ-aggregation and neurotoxity. Drug Dev Res 70:111–124

    Article  CAS  Google Scholar 

  10. Copani A, Sortino MA, Caricasole A et al (2002) Erratic expression of DNA polymerases by beta-amyloid causes neuronal death. FASEB J 16:2006–2008

    CAS  PubMed  Google Scholar 

  11. Copani A, Hoozemans JJ, Caraci F et al (2006) DNA polymerase-beta is expressed early in neurons of Alzheimer’s disease brain and is loaded into DNA replication forks in neurons challenged with beta-amyloid. J Neurosci 26:10949–10957

    Article  CAS  PubMed  Google Scholar 

  12. Anderson AC, Wright DL (2005) The design and docking of virtual compound libraries to structures of drug target. Curr Comput Aided Drug Des 1:103–127

    Article  CAS  Google Scholar 

  13. Jorgensen WL (2004) The many role of computation in drug discovery. Science 303:1813–1818

    Article  CAS  PubMed  Google Scholar 

  14. Schoichet BK (2004) Virtual screening of chemical libraries. Nature 432:862–865

    Article  CAS  Google Scholar 

  15. Dixon SL, Smondyrev AM, Rao SN (2006) PHASE: a novel approach to pharmacophore modelling and 3D database searching. Chem Biol Drug Des 67:370–372

    Article  CAS  PubMed  Google Scholar 

  16. Johnson MA, Maggiora GM (1990) Concept and applications of molecular similarity. John Wiley, New York

    Google Scholar 

  17. Stahura FL, Bajorath J (2004) Virtual screening methods that complement high-throughput screening. Comb Chem High Throughput Screen 7:259–269

    Article  CAS  PubMed  Google Scholar 

  18. Willett P (2006) Similarity-based virtual screening using 2D fingerprints. Drug Discov Today 11:1046–1053

    Article  CAS  PubMed  Google Scholar 

  19. Cheeseright T, Mackey M, Rose S et al (2006) Molecular field extrema as descriptors of biological activity: definition and validation. J Chem Inf Model 46:665–676

    Article  CAS  PubMed  Google Scholar 

  20. Nikolic K, Mavridis L, Djikic T et al (2016) Drug design for CNS diseases: polypharmacological profiling of compounds using cheminformatic, 3D-QSAR and virtual screening methodologies. Front Neurosci 10:265. doi:10.3389/fnins.2016.00265

    Article  PubMed  PubMed Central  Google Scholar 

  21. Pozzan A (2006) Molecular descriptors and methods for ligand based virtual high throughput screening in drug discovery. Curr Pharm Des 12:2099–2110

    Article  CAS  PubMed  Google Scholar 

  22. Walters WP, Stahl MT, Murcko MA (1998) Virtual screening – an overview. Drug Discov Today 3:160–178

    Article  CAS  Google Scholar 

  23. Böhm HJ, Schneider G (2000) Virtual screening for bioactive molecules. Wiley-VCH, Weinheim

    Book  Google Scholar 

  24. Klebe G (2000) Virtual screening: an alternative or complement to high throughput screening. Kluwer, Drordrecht

    Google Scholar 

  25. McGaughey GB, Sheridan RP, Bayly CI et al (2007) Comparison of topological, shape and docking methods in virtual screening. J Chem Inf Model 2007(47):1504–1519

    Article  CAS  Google Scholar 

  26. Sheridan RP, Kearsley SK (2002) Why do we need so many chemical similarity search methods? Drug Discov Today 7:903–911

    Article  PubMed  Google Scholar 

  27. Patterson DE, Cramer RD, Ferguson AM et al (1996) Neighborhood behavior: a useful concept for validation of ‘molecular diversity’ descriptors. J Med Chem 39:3049–3059

    Article  CAS  PubMed  Google Scholar 

  28. Nikolova N, Jaworska J (2003) Approaches to measure chemical similarity – a review. QSAR Comb Sci 22:1006–1026

    Article  CAS  Google Scholar 

  29. Katritzky AR, Lobanov VS, Karelson M (1996) CODESSA reference manual, Version 2.0, Gainville

    Google Scholar 

  30. Todeschini R, Consonni V, Mannhold R et al (2009) Molecular descriptors for chemoinformatics. WILEY-VCH, Weinheim

    Book  Google Scholar 

  31. Good AC, Mason JS (1995) Three-dimensional structure database searches. Rev Comput Chem 7:67–117

    Google Scholar 

  32. Cheng C, Maggiora G, Lajiness M et al (1996) Four association coefficients for relating molecular similarity measures. J Chem Inf Comput Sci 36:909–915

    Article  CAS  Google Scholar 

  33. Carbo R, Arnau M, Leyda L (1980) How similar is a molecule to another? An electron density measure of similarity between two molecular structures. Int J Quantum Chem 17:1185–1189

    Article  CAS  Google Scholar 

  34. Reynolds CA, Burt C, Richards WG (1992) A linear molecular similarity index. Quant Struct-Activ Relat 11:34–35

    Article  CAS  Google Scholar 

  35. Flower DR (1988) On the properties of bit sting based measure of chemical similarity. J Chem Inf Comput Sci 38:379–386

    Article  Google Scholar 

  36. Godden JW (2000) Combinatorial preferences affect molecular similarity/diversity calculations using binary fingerprints and Tanimoto coefficients. J Chem Inf Comput Sci 40:163–166

    Article  CAS  PubMed  Google Scholar 

  37. Holiday JD, Hu CY, Willett P (2002) Grouping of coefficients for the calculation of inter-molecular similarity and dissimilarity using 2D fragment bit string. Comb Chem High Throughput Screen 5:155–166

    Google Scholar 

  38. Salim N, Holliday J, Willett P (2003) Combination of fingerprint based similarity coefficient using data fusion. J Chem Inf Comput Sci 43:435–442

    Article  CAS  PubMed  Google Scholar 

  39. Willet P (1998) Chemical similarity searching. J Chem Inf Comput Sci 38:983–996

    Article  Google Scholar 

  40. Bender A, Glen RC (2004) Molecular similarity: a key technique in molecular informatics. Org BiomolChem 2:3204–3218

    Article  CAS  Google Scholar 

  41. Estrada E, Uriarte E (2001) Recent advances on the role of topological indices in drug discovery research. Curr Med Chem 8:1573–1588

    Article  CAS  PubMed  Google Scholar 

  42. Balaban AT, Basak SC, Colburn T et al (1994) Correlation between structure and normal boiling points of haloalkanes C1-c4 using neural networks. J Chem Inf Comput Sci 34:1118–1121

    Article  CAS  Google Scholar 

  43. Cone MM, Venkataraghavan R, McLafferty FW (1977) Molecular structure comparison program for the identification of maximal common substructures. J Am Chem Soc 99:7668–7671

    Article  CAS  Google Scholar 

  44. Burden FR, Winkler DA (1999) Robust QSAR models using Bayesian regularized artificial neural networks. J Med Chem 42:3183–3187

    Article  CAS  PubMed  Google Scholar 

  45. Pearlman RS, Smith KM (1998) Novel software tools for chemical diversity. Perspect Drug Discov Des 9-11:339–353

    Article  Google Scholar 

  46. Cramer RD, Patterson DE, Bunce JD (1988) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967

    Article  CAS  PubMed  Google Scholar 

  47. Hodgkin EE, Richards WG (1987) Molecular similarity based on electrostatic potential and electric field. Int J Quantum Chem 87:105–110

    Article  Google Scholar 

  48. Walker PD, Arteca GA, Mezey PG (1991) A complete shape characterization for molecular charge densities represented by Gaussian-type functions. J Comput Chem 12:220–230

    Article  CAS  Google Scholar 

  49. Good AC, Hodgkin EE, Richards WG (1993) The utilisation of Gaussian functions for the rapid evaluation of molecular similarity. J Chem Inf Comput Sci 32:188–191

    Article  Google Scholar 

  50. Schneider G, Neidhart W, Giller T et al (1999) “Scaffold-hopping” by topological pharmacophore search: a contribution to virtual screening. Angew Chem Int Ed Engl 38:2894–2896

    Article  CAS  PubMed  Google Scholar 

  51. Mason JS, Good AC, Martin EJ (2001) 3-D pharmacophores in drug discovery. Curr Pharm Des 7:567–597

    Article  CAS  PubMed  Google Scholar 

  52. Mason JS, Morize I, Menard PR et al (1999) New 4-point pharmacophore method for molecular similarity and diversity applications: overview of the method and applications, including a novel approach to the design of combinatorial libraries containing privileged substructures. J Med Chem 42:3251–3264

    Article  CAS  PubMed  Google Scholar 

  53. Maldonado AG, Doucet JP, Petitjean M et al (2006) Molecular similarity and diversity in chemoinformatics: from theory to applications. Mol Divers 10:39–79

    Article  CAS  PubMed  Google Scholar 

  54. Zhao H (2007) Scaffold selection and scaffold hopping in lead generation: a medicinal chemistry perspective. Drug Discov Today 12:149–155

    Article  CAS  PubMed  Google Scholar 

  55. Ehrlich P (1909) Ueber den jetzigen Stand der Chemotherapie. Ber Dtsch Chem Ges 42:17–47

    Article  CAS  Google Scholar 

  56. Wermuth CG, Ganellin CR, Lindberg P et al (1998) Glossary of terms used in medicinal chemistry (IUPAC recommendations 1997). Annu Rep Med Chem 33:385–395

    Article  CAS  Google Scholar 

  57. Yang SH (2010) Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today 15:444–450

    Article  CAS  PubMed  Google Scholar 

  58. Barnum D, Greene J, Smellie A et al (1996) Identification of common functional configurations among molecules. J Chem Inf Comput Sci 36:563–571

    Article  CAS  PubMed  Google Scholar 

  59. Li H, Sutter JM, Hoffmann R (2000) HypoGen: an automated system for generating 3D predictive pharmacophore models. In: Güner OF (ed) Pharmacophore perception, development, and use in drug design. International University Line, La Jolla, pp 171–189

    Google Scholar 

  60. Martin YC (2000) DISCO: what we did right and what we missed. In: Güner OF (ed) Pharmacophore perception, development, and use in drug design. International University Line, La Jolla, pp 49–68

    Google Scholar 

  61. Jones G, Willet P (2000) GASP: genetic algorithm superimposition program. In: Güner OF (ed) Pharmacophore perception, development, and use in drug design. International University Line, La Jolla, pp 85–106

    Google Scholar 

  62. Dror O, Shulman-Peleg A, Nussinov R et al (2006) Predicting molecular interactions in silico. I. An updated guide to pharmacophore identification and its applications to drug design. Front Med Chem 3:551–584

    Google Scholar 

  63. Deng J, Sanchez T, Neamati N et al (2006) Dynamic pharmacophore model optimization: identification of novel HIV-1 integrase inhibitors. J Med Chem 49:1684–1692

    Article  CAS  PubMed  Google Scholar 

  64. Antonio L (2015) Machine-learning approaches in drug discovery: methods and applications. Drug Discov Today 20:318–331

    Article  Google Scholar 

  65. Ding H, Takigawa I, Mamitsuka H et al (2014) Similarity-based machine learning methods for predicting drug-target interactions: a brief review. Brief Bioinform 15:734–747

    Article  PubMed  Google Scholar 

  66. Ivanenkov YA, Savchuk NP, Ekins S et al (2009) Computational mapping tools for drug discovery. Drug Discov Today 14:767–775

    Article  CAS  PubMed  Google Scholar 

  67. Hastie T, Tibshirami R, Friedman J (2001) The elements of statistical learning. Springer, New York

    Book  Google Scholar 

  68. Schölkopf B, Smola AJ (2002) Learning with kernels. MIT Press, London

    Google Scholar 

  69. Svetnik V, Liaw A, Tong C et al (2003) Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comput Sci 43:1947–1958

    Article  CAS  PubMed  Google Scholar 

  70. Rusinko A, Farmen MW, Lambert CG et al (1999) Analysis of a large structure/biological activity data set using recursive partitioning. J Chem Inf Comput Sci 39:1017–1026

    Article  CAS  PubMed  Google Scholar 

  71. Ma XH, Jia J, Zhu F et al (2009) Comparative analysis of machine learning methods in ligand-based virtual screening of large compound libraries. Comb Chem High Throughput Screen 12:344–357

    Article  CAS  PubMed  Google Scholar 

  72. Plewczynski D, Spieser SAH, Koch U (2009) Performance of machine learning methods for ligand-based virtual screening. Comb Chem High Throughput Screen 12(4):358–368

    Article  CAS  PubMed  Google Scholar 

  73. Lionta E, Spyrou G, Vassilatis DK et al (2014) Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr Top Med Chem 14:1923–1938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Charifson PS, Corkery JJ, Murcko MA et al (1999) Consensus scoring: a method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. J Med Chem 42:5100–5109

    Article  CAS  PubMed  Google Scholar 

  75. Kitchen DB, Decornez H, Furr JR et al (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3:935–949

    Article  CAS  PubMed  Google Scholar 

  76. Craig IR, Essex JW, Spiegel K (2010) Ensemble docking into multiple crystallographically derived protein structure: an evaluation based on statistical analysis of enrichments. J Chem Inf Model 50:511–524

    Article  CAS  PubMed  Google Scholar 

  77. Heller S, McNaught A, Stein S et al (2013) InChI – the worldwide chemical structure identifier standard. J Cheminform 5:7. doi:10.1186/1758-2946-5-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Spyrakis F, Cavasotto CN (2015) Open challenges in structure-based virtual screening: receptor modeling, target flexibility consideration and active site water molecules description. Arch Biochem Biophys 583:105–119

    Article  CAS  PubMed  Google Scholar 

  79. Ke YY, Coumar MS, Shiao HY et al (2014) Ligand efficiency based approach for efficient virtual screening of compound libraries. Eur J Med Chem 83:226–235

    Article  CAS  PubMed  Google Scholar 

  80. Liu J, Wang R (2015) Classification of current scoring functions. J Chem Inf Model 55:475–482

    Article  CAS  PubMed  Google Scholar 

  81. Korb O, Brink TT, Raj FRVP et al (2012) Are predefined decoy sets of ligand poses able to quantify scoring function accuracy? J Comput Aided Mol Des 26:185–197

    Article  CAS  PubMed  Google Scholar 

  82. Kufareva I, Abagyan R (2012) Methods of protein structure comparison. Methods Mol Biol 857:231–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sonmez F, Kurt BZ, Gazioglu I et al (2016) Design, synthesis and docking study of novel coumarin ligands as potential selective acetylcholinesterase inhibitors. J Enzyme Inhib Med Chem 32:285–297

    Article  CAS  Google Scholar 

  84. Holzgrabe U, Kapkova P, Alptuzun V et al (2007) Targeting acetylcholinesterase to treat neurodegeneration. Expert OpinTher Targets 11:161–179

    Article  CAS  Google Scholar 

  85. Giacobini E, Spiegel R, Enz A et al (2002) Inhibition of acetyl- and butyryl-cholinesterase in the cerebrospinal fluid of patients with Alzheimer’s disease by rivastigmine: correlation with cognitive benefit. J Neural Transm 109:1053–1065

    Article  CAS  PubMed  Google Scholar 

  86. Catto M, Pisani L, Leonetti F et al (2013) Design, synthesis and biological evaluation of coumarin alkylamines as potent and selective dual binding site inhibitors of acetylcholinesterase. Bioorg Med Chem 21:146–152

    Article  CAS  PubMed  Google Scholar 

  87. Bajda M, Guzior N, Ignasik M et al (2011) Multi-target-directed ligands in Alzheimer’s disease treatment. Curr Med Chem 18:4949–49759

    Article  CAS  PubMed  Google Scholar 

  88. Kaur J, Zhang MQ (2000) Molecular modelling and QSAR of reversible acetylcholinesterase inhibitors. Curr Med Chem 7:273–294

    Article  CAS  PubMed  Google Scholar 

  89. Bermudez-Lugo JA, Rosales-Hernandez MC, Deeb O et al (2011) In silico methods to assist drug developers in acetylcholinesterase inhibitor design. Curr Med Chem 18:1122–1136

    Article  CAS  PubMed  Google Scholar 

  90. Speck-Planche A, Luan F, Cordeiro MNDS (2012) Role of ligand-based drug design methodologies toward the discovery of new anti-Alzheimer agents: futures perspectives in fragment-based ligand design. Curr Med Chem 19:1635–1645

    Article  CAS  PubMed  Google Scholar 

  91. Rollinger JM, Hornick A, Langer T et al (2004) Acetylcholinesterase inhibitory activity of scopolin and scopoletin discovered by virtual screening of natural products. J Med Chem 47:6248–6254

    Article  CAS  PubMed  Google Scholar 

  92. Sopkova-de Oliveira Santos J, Lesnard A, Agondanou JH et al (2010) Virtual screening discovery of new acetylcholinesterase inhibitors issued from CERMN chemical library. J Chem Inf Model 50:422–428

    Article  CAS  PubMed  Google Scholar 

  93. Gupta S, Fallarero A, Järvinen P et al (2011) Discovery of dual binding site acetylcholinesterase inhibitors identified by pharmacophore modeling and sequential virtual screening techniques. Bioorg Med Chem Lett 21:1105–1112

    Article  CAS  PubMed  Google Scholar 

  94. Jarvinen P, Fallarero A, Gupta S et al (2010) Miniaturization and validation of the Ellman’s reaction based acetylcholinesterase inhibitory assay into 384-well plate format and screening of a chemical library. Comb Chem High Throughput Screen 13:278–284

    Article  CAS  PubMed  Google Scholar 

  95. Lu SH, Wu JW, Liu HL et al (2011) The discovery of potential acetylcholinesterase inhibitors: a combination of pharmacophore modeling, virtual screening, and molecular docking studies. J Biomed Sci 18:8. doi:10.1186/1423-0127-18-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chen Y, Fang L, Peng S et al (2012) Discovery of a novel acetylcholinesterase inhibitor by structure-based virtual screening techniques. Bioorg Med Chem Lett 22:3181–3187

    Article  CAS  PubMed  Google Scholar 

  97. Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov 10:449–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Chaudhaery SS, Roy KK, Shakya N et al (2010) Novel carbamates as orally active acetylcholinesterase inhibitors found to improve scopolamine-induced cognition impairment: pharmacophore-based virtual screening, synthesis, and pharmacology. J Med Chem 53:6490–6505

    Article  CAS  PubMed  Google Scholar 

  99. Bag S, Tulsan R, Sood A et al (2013) Pharmacophore modeling, virtual and in vitro screening for acetylcholinesterase inhibitors and their effects on amyloid-β self- assembly. Curr Comput Aided Drug Des 9:2–14

    CAS  PubMed  Google Scholar 

  100. Ambure P, Kar S, Roy K (2014) Pharmacophore mapping-based virtual screening followed by molecular docking studies in search of potential acetylcholinesterase inhibitors as anti-Alzheimer’s agents. Biosystems 116:10–20

    Article  CAS  PubMed  Google Scholar 

  101. Nogara PA, SaraivaRde A, CaeranBueno D et al (2015) Virtual screening of acetylcholinesterase inhibitors using the Lipinski’s rule of five and ZINC databank. Biomed Res Int 2015:870389. doi:10.1155/2015/870389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Bajda A, Panek D, Hebda M et al (2015) Search for potential cholinesterase inhibitors from the ZINC database by virtual screening method. Acta Pol Pharm 72:737–745

    CAS  PubMed  Google Scholar 

  103. Xie Q, Tang Y, Li W et al (2006) Investigation of the binding mode of (−)-meptazinol and bis-meptazinol derivatives on acetylcholinesterase using a molecular docking method. J Mol Model 12:390–397

    Article  CAS  PubMed  Google Scholar 

  104. Dhanjal JK, Sharma S, Grover A et al (2015) Use of ligand-based pharmacophore modeling and docking approach to find novel acetylcholinesterase inhibitors for treating Alzheimer’s. Biomed Pharmacother 71:146–152

    Article  CAS  PubMed  Google Scholar 

  105. Chen Y, Lin H, Yang H et al (2017) Discovery of new acetylcholinesterase and butyrylcholinesterase inhibitors through structure-based virtual screening. RSC Adv 7:3429–3438

    Article  Google Scholar 

  106. Kirchmair J, Distinto S, Markt P et al (2009) How to optimize shape-based virtual screening: choosing the right query and including chemical information. J Chem Inf Model 49:678–692

    Article  CAS  PubMed  Google Scholar 

  107. Josien H (2002) Recent advances in the development of gamma-secretase inhibitors. Curr Opin Drug Discov Devel 5:513–525

    CAS  PubMed  Google Scholar 

  108. Peters JU, Galley G, Jacobsen H et al (2007) Novel orally active, dibenzazepinone-based gamma-secretase inhibitors. Bioorg Med Chem Lett 17:5918–5923

    Article  CAS  PubMed  Google Scholar 

  109. Josien H, Bara T, Rajagopalan M et al (2007) Small conformationally restricted piperidine N-arylsulfonamides as orally active gamma-secretase inhibitors. Bioorg Med Chem Lett 17:5330–5335

    Article  CAS  PubMed  Google Scholar 

  110. Shaw D, Best J, Dinnell K et al (2006) 3,4-Fused cyclohexyl sulfones as gamma-secretase inhibitors. Bioorg Med Chem Lett 16:3073–3076

    Article  CAS  PubMed  Google Scholar 

  111. Thompson LA, Liauw AY, Ramanjulu MM et al (2006) Synthesis and evaluation of succinoyl-caprolactam gamma-secretase inhibitors. Bioorg Med Chem Lett 16:2357–2363

    Article  CAS  PubMed  Google Scholar 

  112. Prasad CVC, Noonan JW, Sloan CP et al (2004) Hydroxytriamides as potent gamma-secretase inhibitors. Bioorg Med Chem Lett 14:1917–1921

    Article  CAS  PubMed  Google Scholar 

  113. Best JD, Smith DW, Reilly MA et al (2007) The novel gamma secretase inhibitor N-[cis-4-[(4-chlorophenyl)sulfonyl]-4-(2,5-difluorophenyl)cyclohexyl]-1,1,1-trifluoromethanesulfonamide (MRK-560) reduces amyloid plaque deposition without evidence of notch-related pathology in the Tg2576 mouse. J Pharmacol Exp Ther 320:552–558

    Article  CAS  PubMed  Google Scholar 

  114. Siemers ER, Quinn JF, Kaye J et al (2006) Effects of a gamma-secretase inhibitor in a randomized study of patients with Alzheimer disease. Neurology 66:602–604

    Article  CAS  PubMed  Google Scholar 

  115. Congreve M, Aharony D, Albert J et al (2007) Application of fragment screening by X-ray crystallography to the discovery of aminopyridines as inhibitors of beta-secretase. J Med Chem 50:1124–1132

    Article  CAS  PubMed  Google Scholar 

  116. Barrow JC, Stauffer SR, Rittle KE et al (2008) Discovery and X-ray crystallographic analysis of a spiro piperidine iminohydantoin inhibitor of beta-secretase. J Med Chem 51:6259–6262

    Article  CAS  PubMed  Google Scholar 

  117. Gundersen E, Fan K, Haas K et al (2005) Molecular-modeling based design, synthesis, and activity of substituted piperidines as γ-secretase inhibitors. Bioorg Med Chem Lett 15:1891–1894

    Article  CAS  PubMed  Google Scholar 

  118. Smith DW, Munoz B, Srinivasan K et al (2000) Preparation of sulfonamide derivatives as amyloid production inhibitors useful in treating or preventing disease related to. WO 0050391, 2000. Chem Abstr 2000 133:207678

    Google Scholar 

  119. Vapnik VN (1995) The nature of statistical learning theory. Springer, New York

    Book  Google Scholar 

  120. Yang XG, Lv W, Zong Y et al (2009) In silico prediction and screening of γ-secretase inhibitors by molecular descriptors and machine learning methods. J Comput Chem 31:1249–1258

    Google Scholar 

  121. Polgár T, Keserü GM (2005) Virtual screening for beta-secretase (BACE1) inhibitors reveals the importance of protonation states at Asp32 and Asp228. J Med Chem 48:3749–3755

    Article  PubMed  CAS  Google Scholar 

  122. Huang D, Lüthi U, Kolb P et al (2006) In silico discovery of B-secretase inhibitors. J Am Chem Soc 128:5436–5443

    Article  CAS  PubMed  Google Scholar 

  123. Huang D, Caflisch A (2004) Efficient evaluation of binding free energy using continuum electrostatics solvation. J Med Chem 47:5791–5797

    Article  CAS  PubMed  Google Scholar 

  124. Vijayan RSK, Prabu M, Mascarenhas NM et al (2009) Hybrid structure-based virtual screening protocol for the identification of novel BACE1 inhibitors. J Chem Inf Model 49:647–657

    Article  CAS  PubMed  Google Scholar 

  125. Schuster D, Nashev LG, Kirchmair J et al (2008) Discovery of nonsteroidal 17 Aβ-hydroxysteroid dehydrogenase 1 inhibitors by pharmacophore-based screening of virtual compound libraries. J Med Chem 51:4188–4199

    Article  CAS  PubMed  Google Scholar 

  126. Xiao K, Li X, Li J et al (2006) Design, synthesis, and evaluation of Leu*Ala hydroxyethylene-based non-peptide beta-secretase (BACE) inhibitors. Bioorg Med Chem 14:4535–4541

    Article  CAS  PubMed  Google Scholar 

  127. Grant JA, Mosyak L, Nicholls A (2005) A shape-based 3-D scaffold hopping method and its application to a bacterial protein-protein interaction. J Med Chem 48:1489–1495

    Article  PubMed  CAS  Google Scholar 

  128. Jacobsson M, Karlén A (2006) Ligand bias of scoring functions in structure-based virtual screening. J Chem Inf Model 46:1334–1343

    Article  CAS  PubMed  Google Scholar 

  129. Xu W, Chen G, Liew OW et al (2009) Novel non-peptide beta-secretase inhibitors derived from structure-based virtual screening and bioassay. Bioorg Med Chem Lett 19:3188–3192

    Article  CAS  PubMed  Google Scholar 

  130. Hossain T, Mukherjee A, Saha A (2015) Chemometric design to explore pharmacophore features of BACE inhibitors for controlling Alzheimer’s disease. Biomed Res Int 11:549–557

    CAS  Google Scholar 

  131. Yang Y, Pei J, Lai L (2011) LigBuilder 2: a practical de novo drug design approach. J Chem Inf Model 51:1083–1091

    Article  CAS  Google Scholar 

  132. Doddareddy MR, Lee YJ, Cho YS et al (2004) Hologram quantitative structure activity relationship studies on 5-HT6 antagonists. Bioorg Med Chem 12:3815–3824

    Article  CAS  PubMed  Google Scholar 

  133. Ju Y, Li Z, Deng Y et al (2016) Identification of novel BACE1 inhibitors by combination of pharmacophore modeling, structure-based design and in vitro assay. Curr Comput Aided Drug Des 12:73–82

    Article  CAS  PubMed  Google Scholar 

  134. Larbig G, Pickhardt M, Lloyd DG et al (2007) Screening for inhibitors of tau protein aggregation into Alzheimer paired helical filaments: a ligand based approach results in successful scaffold hopping. Curr Alzheimer Res 4:315–323

    Article  CAS  PubMed  Google Scholar 

  135. Pickhardt M, von Bergen M, Gazova Z et al (2005) Screening for inhibitors of tau polymerization. Curr Alzheimer Res 2:219–226

    Article  CAS  PubMed  Google Scholar 

  136. Pinsetta FR, Taft CA, de Paula da Silva CH (2014) Structure- and ligand-based drug design of novel p38-alpha MAPK inhibitors in the fight against the Alzheimer’s disease. J Biomol Struct Dyn 32:1047–1063

    Article  CAS  PubMed  Google Scholar 

  137. Banerjee A, Koziol-White C, Panettieri R Jr (2012) p38 MAPK inhibitors, IKK2 inhibitors, and TNFα inhibitors in COPD. Curr Opin Pharmacol 12:287–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lengauer T (2002) Bioinformatics: from genomes to drugs. Methods and principles in medicinal chemistry. Wiley-VHC Verlag, Weinheim

    Google Scholar 

  139. Viet MH, Chen CY, Hu CK et al (2013) Discovery of dihydrochalcone as potential lead for Alzheimer’s disease: in silico and in vitro study. PLoS One 8(11):e79151

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Lustbader JW, Cirilli M, Lin C et al (2004) ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science 304:448–452

    Article  CAS  PubMed  Google Scholar 

  141. Takuma K, Yao J, Huang J et al (2005) ABAD enhances Abeta-induced cell stress via mitochondrial dysfunction. FASEB J 19:597–598

    CAS  PubMed  Google Scholar 

  142. Marques AT, Fernandes PA, Ramos MJ (2008) Molecular dynamics simulations of the amyloid-beta binding alcohol dehydrogenase (ABAD) enzyme. Bioorg Med Chem 16:9511–9518

    Article  CAS  PubMed  Google Scholar 

  143. Valasani KR, Hu G, Chaney MO et al (2013) Structure-based design and synthesis of benzothiazole phosphonate analogues with inhibitors of human ABAD-ab for treatment of Alzheimer’s disease. Chem Biol Drug Des 81:238–249

    Article  CAS  PubMed  Google Scholar 

  144. Roy S, Kumar A, Baig MH et al (2015) Virtual screening, ADMET profiling, molecular docking and dynamics approaches to search for potent selective natural molecules based inhibitors against metallothionein-III to study Alzheimer’s disease. Methods 15:105–110

    Article  CAS  Google Scholar 

  145. Coyle P, Phylcox JC, Carey LC et al (2002) Metallothionein: the multipurpose protein. Cell Mol Life Sci 59:627–647

    Article  CAS  PubMed  Google Scholar 

  146. Uchida Y, Takio K, Titani K et al (1991) The growth inhibitory factor that is deficient in the Alzheimer’s disease brain is a 68 amino acid metallothionein-like protein. Neuron 7:337–347

    Article  CAS  PubMed  Google Scholar 

  147. Hozumi I, Inuzuka T, Hiraiwa M et al (1995) Changes of growth inhibitory factor after stab wounds in rat brain. Brain Res 688:143–148

    Article  CAS  PubMed  Google Scholar 

  148. Merlo S, Basile L, Giuffrida ML et al (2015) Identification of 5-methoxyflavone as a novel DNA polymerase-beta inhibitor and neuroprotective agent against beta-amyloid toxicity. J Nat Prod 78:2704–2711

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Livia Basile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Basile, L. (2018). Virtual Screening in the Search of New and Potent Anti-Alzheimer Agents. In: Roy, K. (eds) Computational Modeling of Drugs Against Alzheimer’s Disease. Neuromethods, vol 132. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7404-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7404-7_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7403-0

  • Online ISBN: 978-1-4939-7404-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics