Skip to main content

Alzheimer’s Disease Therapy: Present and Future Molecules

  • Protocol
  • First Online:
Computational Modeling of Drugs Against Alzheimer’s Disease

Part of the book series: Neuromethods ((NM,volume 132))

Abstract

Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders and a cause of progressive dementia worldwide. It is generally attributed to multiple genetic factors and, thus, is genetically heterogeneous. The two basic pathological features of AD are extra-neuronal plaques of misfolded β-amyloid proteins and intraneuronal neurofibrillary tangles of hyperphosphorylated tau protein. On therapeutic front, presently there are only two targets for AD, namely, acetylcholinesterase inhibitors and NMDA receptor antagonists that improve the cognitive functions. But these drugs do not act in ameliorating the pathological causes behind AD. Therefore, active research is the need of the hour toward AD treatment. In designing novel drugs or modifying existing molecules, computational approaches have proved to be very useful in saving time and money. Virtual screening, modeling, and docking are being widely used for the last few years by researchers globally. These have indeed helped with a lot of promising compounds on the desk. With continuous efforts in bringing down the problem of AD, researchers have targeted some widely known neuronal targets such as muscarinic/nicotinic acetylcholine receptors, tau hyperphosphorylation, beta-secretase enzyme, and β-amyloid plaques, while many new targets such as sigma-1, α-secretase, histamine H3 receptor, and Lingo-1 have been identified and molecules targeting them are being developed. Apart from synthesizing chemical entities, several natural compounds have been extracted and tested for AD. Compounds such as flavonoids, curcumin, alkaloids, and terpenoids have shown promising activity against various targets. Thus, owing to the helpful hand of computational biology and natural treasures, several promising molecules are on the front, and many candidates are in different clinical trial phases that give positive hopes in near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Castellani RJ, Rolston RK, Smith M (2010) Alzheimer disease. Dis Mon 56(9):484–546

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vilatela MEA, Lopez ML, Gomez PY (2012) Genetics of Alzheimer’s disease. Arch Med Res 43:622–631

    Article  Google Scholar 

  3. Cummings J, Aisen PS, DuBois B, Frölich L, Jack CR, Jones RW et al (2016) Drug development in Alzheimer’s disease: the path to 2025. Alzheimers Res Ther 8:39

    Article  PubMed  PubMed Central  Google Scholar 

  4. Alzheimer’s Association (2013) Alzheimer’s disease facts and figures. Alzheimer’s Association, Chicago

    Google Scholar 

  5. Kumar A, Nisha CM, Silakari C, Sharma I, Anusha K, Gupta N et al (2016) Current and novel therapeutic molecules and targets in Alzheimer’s disease. J Formos Med Assoc 115:3–10

    Article  CAS  PubMed  Google Scholar 

  6. Herrmann N, Chau SA, Kircanski I, Lanctôt KL (2011) Current and emerging drug treatment options for Alzheimers disease: a systematic review. Drugs 71:2031–2065

    Article  CAS  PubMed  Google Scholar 

  7. Kitchen D, Decornez H, Furr J, Bajorath J (2004) Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 3:935–949

    Article  CAS  PubMed  Google Scholar 

  8. Ferreira LG, Dos Santos RN, Oliva G, Andricopulo AD (2015) Molecular docking and structure-based drug design strategies. Molecules 20(7):13384–13421

    Article  CAS  PubMed  Google Scholar 

  9. Niedowicz DM, Nelson PT, Paul Murphy M (2011) Alzheimer’s disease: pathological mechanisms and recent insights. Curr Neuropharmacol 9:674–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E (2011) Alzheimer’s disease. Lancet 377:1019–1031

    Article  PubMed  Google Scholar 

  11. Liu C-C, Liu C-C, Kanekiyo T, Xu H, Bu G (2013) Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nat Rev Neurol 9:106–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Armstrong RA (2013) What causes alzheimer’s disease? Folia Neuropathol 3:169–188

    Article  Google Scholar 

  13. Swerdlow RH, Burns JM, Khan SM (2010) The Alzheimer’s disease mitochondrial cascade hypothesis. J Alzheimers Dis 20:S265–S279

    Article  PubMed  Google Scholar 

  14. Moreira PI, Carvalho C, Zhu X, Smith MA, Perry G (2010) Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim Biophys Acta Mol basis Dis 1802:2–10

    Article  CAS  Google Scholar 

  15. Onyango IG, Dennis J, Khan SM (2016) Mitochondrial dysfunction in Alzheimer’s disease and the rationale for bioenergetics based therapies. Aging Dis 7:201–214

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fisher A (2012) Cholinergic modulation of amyloid precursor protein processing with emphasis on M1 muscarinic receptor: perspectives and challenges in treatment of Alzheimer’s disease. J Neurochem 120:22–33

    Article  CAS  PubMed  Google Scholar 

  17. Buckingham S, Jones A (2009) Nicotinic acetylcholine receptor signalling: roles in Alzheimer’s disease and amyloid neuroprotection. Pharmacol Rev 61(1):39–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fisher A, Michaelson DM, Brandeis R, Haring R (2000) M1 muscarinic agonists as potential disease- modifying agents in Alzheimer’s disease. Ann N Y Acad Sci 920:315–320

    Article  CAS  PubMed  Google Scholar 

  19. Bodick NC, Offen WW, Levey AI, Cutler NR, Gauthier SG, Satlin A et al (1997) Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch Neurol 54:465–473

    Article  CAS  PubMed  Google Scholar 

  20. Bymaster FP, Whitesitt CA, Shannon HE, Delapp N, Ward JS, Calligaro DO et al (1997) Xanomeline – a selective muscarinic agonist for the treatment of Alzheimer’s disease. Drug Dev Res 40:158–170

    Article  CAS  Google Scholar 

  21. Fisher A, Brandeis R (2002) AF150 (S) and AF267B M1 muscarinic agonists as innovative therapies for Alzheimer’s disease. J Mol Neurosci 19:145–153

    Article  CAS  PubMed  Google Scholar 

  22. Foster DJ, Choi DL, Jeffrey Conn P, Rook JM (2014) Activation of M1 and M4 muscarinic receptors as potential treatments for Alzheimer’s disease and schizophrenia. Neuropsychiatr Dis Treat 10:183–191

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Fisher A (2008) Cholinergic treatments with emphasis on M1 muscarinic agonists as potential disease-modifying agents for Alzheimer’s disease. Neurotherapeutics 5:433–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Johnson GVW, Stoothoff WH (2004) Tau phosphorylation in neuronal cell function and dysfunction. J Cell Sci 117(Pt 24):5721–5729

    Article  CAS  PubMed  Google Scholar 

  25. Hanger DP, Anderton BH, Noble W (2009) Tau phosphorylation : the therapeutic challenge for neurodegenerative disease. Trends Mol Med 15(3):112–119

    Article  CAS  PubMed  Google Scholar 

  26. Ghosh A, Osswald H (2014) BACE1 (β-Secretase) inhibitors for the treatment of Alzheimer’s disease. Chem Soc Rev 43(19):6765–6813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vassar R (2014) BACE1 inhibitor drugs in clinical trials for Alzheimer’s disease. Alzheimers Res Ther 6:89

    Article  PubMed  PubMed Central  Google Scholar 

  28. Filser S, Ovsepian SV, Masana M, Blazquez-Llorca L, Elvang AB, Volbracht C et al (2015) Pharmacological inhibition of BACE1 impairs synaptic plasticity and cognitive functions. Biol Psychiatry 77:729–739

    Article  CAS  PubMed  Google Scholar 

  29. Nguyen L, Lucke-Wold BP, Mookerjee SA, Cavendish JZ, Robson MJ, Scandinaro AL et al (2015) Role of sigma-1 receptors in neurodegenerative diseases. J Pharmacol Sci 127:17–29

    Article  CAS  PubMed  Google Scholar 

  30. Hashimoto K (2015) Activation of sigma-1 receptor chaperone in the treatment of neuropsychiatric diseases and its clinical implication. J Pharmacol Sci 127:6–9

    Article  CAS  PubMed  Google Scholar 

  31. Kulshreshtha A, Piplani P (2016) Current pharmacotherapy and putative disease-modifying therapy for Alzheimer’s disease. Neurol Sci 37:1403–1435

    Article  PubMed  Google Scholar 

  32. Mendiola-Precoma J, Berumen LC, Padilla K, Garcia-Alcocer G (2016) Therapies for prevention and treatment of Alzheimer’s disease. Biomed Res Int 2016:2589276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Cole DC, Manas ES, Stock JR, Condon JS, Jennings LD, Aulabaugh A et al (2006) Acylguanidines as small-molecule secretase inhibitors. J Med Chem 49:6158–6161

    Article  CAS  PubMed  Google Scholar 

  34. Esbenshade TA, Browman KE, Bitner RS, Strakhova M, Cowart MD, Brioni JD (2008) The histamine H3 receptor: an attractive target for the treatment of cognitive disorders. Br J Pharmacol 154:1166–1181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wu Z, Guo Z, Gearing M, Chen G (2014) Tonic inhibition in dentate gyrus impairs long-term potentiation and memory in an Alzheimer’s [corrected] disease model. Nat Commun 5:4159

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Fernandez-Enright F, Andrews JL (2016) Lingo-1: a novel target in therapy for Alzheimer’s disease? Neural Regen Res 11:88–89

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ma T, Klann E (2014) PERK: a novel therapeutic target for neurodegenerative diseases? Alzheimers Res Ther 6:30

    Article  PubMed  PubMed Central  Google Scholar 

  38. Gannon M, Peng Y, Jiao K, Qin W (2016) The α2 adrenergic receptor as a novel target for Alzheimer’s disease. FASEB J 30(1):S707.2

    Google Scholar 

  39. Albani D, Polito L, Forloni G (2010) Sirtuins as novel targets for Alzheimer’s disease and other neurodegenerative disorders: experimental and genetic evidence. J Alzheimer Dis 19:11–26

    Article  Google Scholar 

  40. Cummings J, Morstorf T, Lee G (2016) Alzheimer’s drug-development pipeline: 2016 Alzheimer’s Dement. Transl Res Clin Interv 2:222–232

    Google Scholar 

  41. Kim J, Lee HJ, Lee KW (2010) Naturally occurring phytochemicals for the prevention of Alzheimer’s disease. J Neurochem 112:1415–1430

    Article  CAS  PubMed  Google Scholar 

  42. Williams P, Sorribas A, Howes MJR (2011) Natural products as a source of Alzheimer’s drug leads. Nat Prod Rep 28:48–77

    Article  CAS  PubMed  Google Scholar 

  43. Kumar A, Nisha CM, Kumar A, Bai BM, Vimal A (2016) Docking and ADMET prediction of few GSK-3 inhibitors divulges 6-bromoindirubin-3-oxime as a potential inhibitor. J Mol Graph Model 65:100–107

    Article  PubMed  Google Scholar 

  44. Airoldi C, Sironi E, Dias C, Marcelo F, Martins A, Rauter AP et al (2013) Natural compounds against Alzheimer’s disease: molecular recognition of Ab1–42 peptide by Salvia sclareoides extract and its major component, rosmarinic acid, as investigated by NMR. Chem Asian J 8:596–602

    Article  CAS  PubMed  Google Scholar 

  45. Moniruzzaman M, Asaduzzaman M, Hossain MS, Sarker J, Rahman SMA, Rashid M et al (2015) In vitro antioxidant and cholinesterase inhibitory activities of methanolic fruit extract of Phyllanthus acidus. BMC Complement Altern Med 15:403

    Article  PubMed  PubMed Central  Google Scholar 

  46. Saliu JA, Olabiyi AA (2016) Aqueous extract of Securidaca longipedunculata Oliv. and Olax subscorpioidea inhibits key enzymes (acetylcholinesterase and butyrylcholinesterase) linked with Alzheimer’s disease in vitro. Pharm Biol 55:252–257

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Awanish Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Kumar, A., Kumar, A. (2018). Alzheimer’s Disease Therapy: Present and Future Molecules. In: Roy, K. (eds) Computational Modeling of Drugs Against Alzheimer’s Disease. Neuromethods, vol 132. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7404-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7404-7_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7403-0

  • Online ISBN: 978-1-4939-7404-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics