Skip to main content

Computational Modeling of Gamma-Secretase Inhibitors as Anti-Alzheimer Agents

  • Protocol
  • First Online:
  • 1636 Accesses

Part of the book series: Neuromethods ((NM,volume 132))

Abstract

γ-Secretase (gamma secretase) is a complex unusual aspartyl protease, responsible for the production of amyloid-β peptides (Aβ) involved in Alzheimer’s disease (AD). Inhibition of gamma secretase (GS) is an attractive therapeutic strategy to slow down the pathological progression of AD. For a long time, GS-targeted structure-based drug designing remained unrealistic without the 3D structural knowledge of GS. Hence, to meet the prevailing urgent need for AD drugs, several groups individually tried to develop GS inhibitors, with the aid of computational drug designing methods. This chapter mainly provides with a detailed discussion on a QSAR-guided fragment-based virtual screening method for GS inhibitor design and identification. In this study, we took advantage of the wealth of available known small molecular GS inhibitors and applied in this drug designing program. Here, the non-transition state small molecular GS inhibitors with corresponding affinity values were used to develop 2D- and 3D-QSAR models investigating alternative site-binding GS inhibitors. HipHop pharmacophore-based alignment-dependent (CoMFA and CoMSIA) and GRIND-based alignment-independent 3D-QSAR models were developed to elucidate the potential 3D features involved in GS inhibition. Consensus of QSAR results from this study underscores the reliability and accuracy of the results and provides a rationale for the design of novel potent GS inhibitors that can have AD therapeutic application.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Alzheimer (1987) About a peculiar diseases of the cerebral cortex. By Alois Alzheimer, 1907 (Translated by L. Jarvik and H. Greenson). Alzheimer Dis Assoc Disord 1:3–8

    Google Scholar 

  2. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766

    CAS  PubMed  Google Scholar 

  3. Cummings JL (2004) Alzheimer’s disease. N Engl J Med 351:56–67

    Article  CAS  PubMed  Google Scholar 

  4. Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890

    Article  CAS  PubMed  Google Scholar 

  5. Brookmeyer R, Johnson E, Ziegler-Graham K et al (2007) Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 3:186–191

    Article  PubMed  Google Scholar 

  6. Prince M, Bryce R, Albanese E et al (2013) The global prevalence of dementia: a systematic review and meta-analysis. Alzheimers Dement 9:63–75

    Article  PubMed  Google Scholar 

  7. Hardy JA, Higgins GA (1992) Alzheimer’s disease: the amyloid cascade hypothesis. Science 256:184–185

    Article  CAS  PubMed  Google Scholar 

  8. Sisodia SS, St. George-Hyslop PH (2002) γ -secretase, notch, aβand Alzheimer’s disease: where do the presenilins fit in? Nat Rev Neurosci 3:281–289

    Article  CAS  PubMed  Google Scholar 

  9. John V, Beck JP, Bienkowski MJ et al (2003) Human beta-secretase (bace) and bace inhibitors. J Med Chem 46:4625–4630

    Article  CAS  PubMed  Google Scholar 

  10. Lahiri DK, Ghosh C, Ge YW (2003) A proximal gene promoter region for the β-amyloid precursor protein provides a link between development, apoptosis and Alzheimer’s disease. Ann N Y Acad Sci 1010:643–647

    Article  CAS  PubMed  Google Scholar 

  11. Walsh DM, Selkoe DJ (2004) Deciphering the molecular basis of memory failure in Alzheimer’s disease. Neuron 44:181–193

    Article  CAS  PubMed  Google Scholar 

  12. Tolia A, De Strooper B (2009) Structure and function of γ-secretase. Semin Cell Dev Biol 20:211–218

    Article  CAS  PubMed  Google Scholar 

  13. Page RM, Gutsmiedl A, Fukumori A et al (2010) β-amyloid precursor protein mutants respond to γ-secretase modulators. J Biol Chem 285:17798–17810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Iwatsubo T, Odaka A, Suzuki N et al (1994) Visualization of a beta 42(43) and a beta 40 in senile plaques with end-specific a beta monoclonals: evidence that an initially deposited species is a beta 42(43). Neuron 13:45–53

    Article  CAS  PubMed  Google Scholar 

  15. Beel A, Sanders C (2008) Substrate specificity of γ-secretase and other intramembrane proteases. Cell Mol Life Sci 65:1311–1334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gordon WR, Arnett KL, Blacklow SC (2008) The molecular logic of notch signaling–a structural and biochemical perspective. J Cell Sci 121:3109–3119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Barten DM, Guss VL, Corsa JA et al (2005) Dynamics of β-amyloid reductions in brain, cerebrospinal fluid, and plasma of β-amyloid precursor protein transgenic mice treated with a γ-secretase inhibitor. J Pharmacol Exp Ther 312:635–643

    Article  CAS  PubMed  Google Scholar 

  18. Comery TA, Martone RL, Aschmies S et al (2005) Acute γ-secretase inhibition improves contextual fear conditioning in the Tg2576 mouse model of Alzheimer’s disease. J Neurosci 25:8898–8902

    Article  CAS  PubMed  Google Scholar 

  19. Wolfe MS, Kopan R (2004) Intramembrane proteolysis: theme and variations. Science 305:1119–1123

    Article  CAS  PubMed  Google Scholar 

  20. Edbauer D, Winkler E, Regula JT et al (2003) Reconstitution of gamma-secretase activity. Nat Cell Biol 5:486–488

    Article  CAS  PubMed  Google Scholar 

  21. De Strooper B, Saftig P, Craessaerts K et al (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391:387–390

    Article  PubMed  Google Scholar 

  22. Laudon H, Hansson EM, Melen K et al (2005) A nine-transmembrane domain topology for presenilin 1. J Biol Chem 280:35352–35360

    Article  CAS  PubMed  Google Scholar 

  23. Li H, Wolfe MS, Selkoe DJ (2009) Toward structural elucidation of the γ-secretase complex. Structure 17:326–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fagan R, Swindells M, Overington J et al (2001) Nicastrin, a presenilin-interacting protein, contains an amino-peptidase/transferring receptor superfamily domain. Trends Biochem Sci 26:213–214

    Article  CAS  PubMed  Google Scholar 

  25. Fortnam PC, Crystal AS, Morais VA et al (2004) Membrane topology and nicastrin-enhanced endoproteolysis of APH-1, a component of the γ-secretase complex. J Biol Chem 279:3685–3693

    Article  Google Scholar 

  26. Serneels L, Dejaegere T, Craessaerts K et al (2005) Differential contribution of the three aph1 genes to γ-secretase activity in vivo. Proc Natl Acad Sci U S A 102:1719–1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Crystal AS, Morais VA, Pierson TC et al (2003) Membrane topology γ-secretase component pen-2. J Biol Chem 278:20117–20123

    Article  CAS  PubMed  Google Scholar 

  28. Kimberly WT, LaVoie MJ, Ostaszewski BL et al (2003) Gamma-secretase is a membrane protein complex comprised of presenilin, nicastrin, aph-1, and pen-2. Proc. Natl Acad Sci U S A 100:6382–6387

    Article  CAS  Google Scholar 

  29. Wolfe MS, Xia W, Ostaszewski BL et al (1999) Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature 398:513–517

    Article  CAS  PubMed  Google Scholar 

  30. Kornilova AY, Bihel F, Das C et al (2005) The initial substrate binding site of γ-secretase is located on presenilin near the active site. Proc Natl Acad Sci U S A 102:3230–3235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Shah S, Lee SF, Tabuchi K et al (2005) Nicastrin functions as a gamma-secretase-substrate receptor. Cell 122:435–447

    Article  CAS  PubMed  Google Scholar 

  32. Sobhanifar S, Schneider B, Löhr F et al (2010) Structural investigation of the c-terminal catalytic fragment of presenilin 1. Proc Natl Acad Sci 107:9644–9649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. De Stooper B, Iwatsubo T, Wolfe MS (2012) Presenilins and γ-secretase: structure, function, and role in Alzheimer disease. Cold Spring Harb Perspect Med 2:a006304

    Google Scholar 

  34. Bai XC, Yan C, Yang G et al (2015) An atomic structure of human γ-secretase. Nature 525:212–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sun L, Zhao L, Yang G et al (2015) Structural basis of human γ-secretase assembly. Proc Natl Acad Sci U S A 112:6003–6008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Klafki H, Abramowski D, Swoboda R et al (1996) The carboxyl termini of β-amyloid peptides 1-40 and 1-42 are generated by distinct γ-secretase activities. J Biol Chem 271:28655–28659

    Article  CAS  PubMed  Google Scholar 

  37. Bateman RJA (2009) γ-secretase inhibitor decreases amyloid-β production in the central nervous system. Ann Neurol 66:48–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nguyen J-T, Hamada Y, Kimura T et al (2008) Design of potent aspartic protease inhibitors to treat various diseases. Arch Pharm 341:523–535

    Article  CAS  Google Scholar 

  39. Shearman MS, Beher D, Clarke EE et al (2000) L-685,458, an aspartyl protease transition state mimic, is a potent inhibitor of amyloid β-protein precursor γ-secretase activity. Biochemistry 39:8698–8704

    Article  CAS  PubMed  Google Scholar 

  40. Wolfe MS, Xia W, Moore CL et al (1999) Peptidomimetic probes and molecular modeling suggest that Alzheimer’s γ-secretase is an intramembrane-cleaving aspartyl protease. Biochemistry 38:4720–4727

    Article  CAS  PubMed  Google Scholar 

  41. Wallace OB, Smith DW, Deshpande MS et al (2003) Inhibitors of aβ production: solid-phase synthesis and sar of r-hydroxycarbonyl derivatives. Bioorg Med Chem Lett 13:1203–1206

    Article  CAS  PubMed  Google Scholar 

  42. Wolfe MS (2008) γ-Secretase inhibition and modulation for Alzheimer’s disease. Curr Alzheimer Res 5:158–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Das C, Berezovska O, Diehl TS et al (2003) Designed helical peptides inhibit an intramembrane protease. J Am Chem Soc 125:11794–11795

    Article  CAS  PubMed  Google Scholar 

  44. Dovey HF et al (2001) Functional gamma-secretase inhibitors reduce beta-amyloid peptide levels in brain. J Neurochem 76:173–181

    Article  CAS  PubMed  Google Scholar 

  45. Kreft AF, Martone R, Porte A (2009) Recent advances in the identification of γ-secretase inhibitors to clinically test the aβ oligomer hypothesis of Alzheimer’s disease. J Med Chem 52:6169–6188

    Article  CAS  PubMed  Google Scholar 

  46. Hansch C, Fujita T (1964) ρ-σ-π Analysis: a method for the correlation of biological activity and chemical structure. J Am Chem Soc 86:1616–1626

    Article  CAS  Google Scholar 

  47. Klebe G (2006) Virtual ligand screening: strategies, perspectives and limitations. Drug Discov Today 11:580–594

    Article  CAS  PubMed  Google Scholar 

  48. Leach AR, Gillet VJ (2003) An introduction to chemoinformatics. Springer, Dordrecht

    Google Scholar 

  49. Reddy AS, Pati SP, Kumar PP et al (2007) Virtual screening in drug discovery – a computational perspective. Curr Protein Pept Sci 8:329–351

    Article  CAS  PubMed  Google Scholar 

  50. Ravi Keerti A, Ashok Kumar B, Parthasarathy T et al (2005) Qsar studies–potent benzodiazepine gamma-secretase inhibitors. Bioorg Med Chem 13:1873–1878

    Article  CAS  PubMed  Google Scholar 

  51. Sammi T, Silakari O, Ravikumar M (2009) Three-dimensional quantitative structure-activity relationship (3d-qsar) studies of various benzodiazepine analogues of gamma-secretase inhibitors. J Mol Model 15:343–348

    Article  CAS  PubMed  Google Scholar 

  52. Gundersen E, Fan K, Haas K et al (2005) Molecular-modeling based design, synthesis, and activity of substituted piperidines as gamma-secretase inhibitors. Bioorg Med Chem Lett 15:1891–1894

    Article  CAS  PubMed  Google Scholar 

  53. Ajmani S, Janardhan S, Viswanadhan VN (2013) Toward a general predictive qsar model for gamma-secretase inhibitors. Mol Divers 17:421–434

    Article  CAS  PubMed  Google Scholar 

  54. Zettl H, Ness J, Hähnke V et al (2012) Discovery of γ-secretase modulators with a novel activity profile by text-based virtual screening. ACS Chem Biol 7:1488–1495

    Article  CAS  PubMed  Google Scholar 

  55. Manoharan P, Ghoshal N (2012) Rationalizing lead optimization by consensus 2d- comfa comsia grind (3d) qsar guided fragment hopping in search of γ-secretase inhibitors. Mol Divers 16:563–577

    Article  CAS  PubMed  Google Scholar 

  56. Lewis SJ, Smith AL, Neduvelil JG et al (2005) A novel series of potent gamma-secretase inhibitors based on a benzobicyclo[4.2.1] nonane core. Bioorg Med Chem Lett 15:373–378

    Article  CAS  PubMed  Google Scholar 

  57. Sparey T, Beher D, Best J et al (2005) Cyclicsulfamide gamma-secretase inhibitors. Bioorg Med Chem Lett 15:4212–4216

    Article  CAS  PubMed  Google Scholar 

  58. Keown LE, Collins I, Cooper LC et al (2009) Novel orally bioavailable gamma-secretase inhibitors with excellent in vivo activity. J Med Chem 52:3441–3444

    Article  CAS  PubMed  Google Scholar 

  59. Molecular operating environment (MOE) (2009) Chemical Computing Group, Montreal

    Google Scholar 

  60. TSAR, Version 3.3 (2007) Accelrys Inc, San Diego

    Google Scholar 

  61. Cramer RD III, Bunce JD (1988) Comparative molecular field analysis (comfa) 1.Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110:5959–5967

    Article  CAS  PubMed  Google Scholar 

  62. Cramer RD, De Priest SA, Patterson DE et al (1993) In: Kubinyi H (ed) The developing practice of comparative molecular field analysis. in3dqsar in drug design: theory methods and applications. ESCOM, Leiden, pp 443–485

    Google Scholar 

  63. Klebe G, Abraham U, Mietzner T (1994) Molecular similarity indices in a comparative analysis (comsia) of drug molecules to correlate and predict their biological activity. J Med Chem 37:4130–4146

    Article  CAS  PubMed  Google Scholar 

  64. Klebe G (1998) Comparative molecular similarity indices analysis: comsia. Perspect Drug Discovery Des 12-14:87–104

    Article  Google Scholar 

  65. Sybyl, version 7.3 (2009) Tripos International, St. Louis, 63144

    Google Scholar 

  66. Pastor M, Cruciani G, McLay I et al (2000) Grid-independent descriptors (grind): a novel class of alignment-independent three-dimensional molecular descriptors. JMed Chem 43:3233–3243

    CAS  Google Scholar 

  67. Cruciani G, Fontaine F, Pastor M (2004) Almond, 3.3.0. Molecular Discovery Ltd, Perugia

    Google Scholar 

  68. Hoskuldsson A (1988) Pls regression methods. J Chemom 2:211–228

    Article  Google Scholar 

  69. Carey RN, Wold S, Westgard JO (1975) Principal component analysis: an alternative to “referee” methods in method comparison studies. Anal Chem 47:1824–1829

    Article  CAS  PubMed  Google Scholar 

  70. Gramatica P, Giani E, Papa E (2007) Statistical external validation and consensus modeling: a qspr case study for Koc prediction. J Mol Graph Model 25:755–766

    Article  CAS  PubMed  Google Scholar 

  71. Ganguly M, Brown N, Schuffenhauer A et al (2006) Introducing the consensus modeling concept in genetic algorithms: application to interpretable discriminant analysis. J Chem Inf Model 46:2110–2124

    Article  CAS  PubMed  Google Scholar 

  72. Halgren TA (1996) Merck molecular force field. I. Basis, form, scope, parameterization and performance of mmff94. J Comput Chem 17:490–451

    Article  CAS  Google Scholar 

  73. Spssversion 15.0 (2009) SPSS Inc, Chicago

    Google Scholar 

  74. Vijayan RS, Ghoshal N (2008) Structural basis for ligand recognition at the benzodiazepine binding site of GABAA alpha 3 receptor, and pharmacophore-based virtual screening approach. J Mol Graph Model 27:286–298

    Article  CAS  PubMed  Google Scholar 

  75. Ehrlich P (1909) Ueber den jetzigenstand der chemotherapie. Ber Dtsch Chem Ges 42:17–47

    Article  CAS  Google Scholar 

  76. Smellie A, Teig SL, Towbin P (1995) Poling: promoting conformational variation. J Comput Chem 16:171–187

    Article  CAS  Google Scholar 

  77. Catalyst, version 4.11 (2005) Accelrys Inc, San Diego

    Google Scholar 

  78. Barnum D, Greene J, Smellie A et al (1996) Identification of common functional configurations among molecules. J Chem Inf Comput Sci 36:563–571

    Article  CAS  PubMed  Google Scholar 

  79. Goodford PJ (1985) A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem 28:849–857

    Article  CAS  PubMed  Google Scholar 

  80. Fontaine F, Pastor M, Sanz F (2004) Incorporating molecular shape into the alignment-free grid-independent descriptors. J Med Chem 47:2805–2815

    Article  CAS  PubMed  Google Scholar 

  81. Baroni M, Costantino G, Cruciani G et al (1993) Generating optimal linear pls estimations (golpe): an advanced chemometric tool for handling 3d-qsar problems. Quant Struct Act Relat 12:9–20

    Article  CAS  Google Scholar 

  82. Cho SJ, Zheng W, Tropsha A (1998) Rational combinatorial library design. 2. Rational design of targeted combinatorial peptide libraries using chemical similarity probe and the inverse qsar approaches. J Chem Inf Comput Sci 38:259–268

    Article  CAS  PubMed  Google Scholar 

  83. OpenEye (2006) OpenEye Scientific Software, Santa Fe

    Google Scholar 

  84. Nicholls A, McGaughey GB, Sheridan RP et al (2010) Molecular shape and medicinal chemistry: a perspective. J Med Chem 53:3862–3886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Mills JE, Dean PM (1996) Three-dimensional hydrogen-bond geometry and probability information from a crystal survey. J Comput Aided Mol Des 6:607–622

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nanda Ghoshal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Manoharan, P., Ghoshal, N. (2018). Computational Modeling of Gamma-Secretase Inhibitors as Anti-Alzheimer Agents. In: Roy, K. (eds) Computational Modeling of Drugs Against Alzheimer’s Disease. Neuromethods, vol 132. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7404-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7404-7_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7403-0

  • Online ISBN: 978-1-4939-7404-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics