Skip to main content

In Silico Strategies to Design Small Molecules to Study Beta-Amyloid Aggregation

  • Protocol
  • First Online:
Computational Modeling of Drugs Against Alzheimer’s Disease

Part of the book series: Neuromethods ((NM,volume 132))

Abstract

The amyloid cascade hypothesis of Alzheimer’s disease is an intriguing and complex pathway which alludes to the accumulation of amyloid (Aβ) aggregates as a key toxic event. In this regard, computational tools can be effectively used to study and design amyloid aggregation inhibitors and modulators. A number of in silico methods have been described in the literature, which use full-length Aβ proteins. However, these methods are computationally expensive. Herein, we describe an in silico method that uses the Aβ hexapeptide-derived steric-zipper octamer assembly as an alternative and effective model to predict the binding interactions of planar small molecule libraries with complex Aβ structures including oligomers, protofibrils, and fibrils. The method provides detailed steps involved in conducting molecular docking, the interpretation of results obtained including ligand-Aβ hexapeptide interactions, calculation of ligand binding energies, and its correlation with the ligand binding affinity. This octamer steric-zipper model represents a relevant prototype to explore and study the mechanisms of Aβ aggregation using small molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. LaFerla FM, Green KN, Oddo S (2007) Intracellular amyloid-beta in Alzheimer’s disease. Nat Rev Neurosci 8:499–509

    Article  CAS  PubMed  Google Scholar 

  2. Maji SK, Wang L, Greenwald J, Riek R (2009) Structure-activity relationship of amyloid fibrils. FEBS Lett 583:2610–2617

    Article  CAS  PubMed  Google Scholar 

  3. Murphy MP, LeVine H (2010) Alzheimer’s disease and the β-amyloid peptide. J Alzheimers Dis 19:311–323

    Article  PubMed  PubMed Central  Google Scholar 

  4. Masters CL, Selkoe DJ (2012) Biochemistry of amyloid β-protein and amyloid deposits in Alzheimer’s disease. Cold Spring Harb Perspect Med 2:a006262

    Article  PubMed  PubMed Central  Google Scholar 

  5. Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kevin WT, Oosten-Hawle PV, Hewitt EW, Radford SE (2015) Amyloid fibres: inert end-stage aggregates or key players in disease? Trends Biochem Sci 40:719–727

    Article  Google Scholar 

  7. Ries HM, Nussbaum-Krammer C (2016) Shape matters: the complex relationship between aggregation and toxicity in protein-misfolding diseases. Essays Biochem 60:181–190

    Article  PubMed  Google Scholar 

  8. Hamley IW (2012) The amyloid beta peptide. Chem Rev 112:5147–5192

    Article  CAS  PubMed  Google Scholar 

  9. Villemagne VL, Burnham S, Bourgeat P, Brown B, Ellis KA, Salvado O, Szoeke C, Macaulay SL, Martins R, Maruff P, Ames D, Rowe CC, Master CL (2013) Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer’s disease: a prospective cohort study. Lancet Neurol 12:357–367

    Article  CAS  PubMed  Google Scholar 

  10. Belluti F, Rampa A, Gobbi S, Bisi A (2013) Small-molecule inhibitors/modulators of amyloid-β peptide aggregation and toxicity for the treatment of Alzheimer’s disease: a patent review (2010 –2012). Expert Opin Ther Pat 23:581–596

    Article  CAS  PubMed  Google Scholar 

  11. Bu XL, Rao PPN, Wang YJ (2016) Anti-amyloid aggregation activity of natural compounds: implications for Alzheimer’s drug discovery. Mol Neurobiol 53:3565–3575

    Article  CAS  PubMed  Google Scholar 

  12. Bruggink KA, Muller M, Kuiperij HB, Verbeek MM (2012) Methods for analysis of amyloid-β aggregates. J Alzheimers Dis 28:735–758

    CAS  PubMed  Google Scholar 

  13. Mohamed T, Shakeri A, Rao PPN (2016) Amyloid cascade in Alzheimer’s disease: recent advances in medicinal chemistry. Eur J Med Chem 113:258–272

    Article  CAS  PubMed  Google Scholar 

  14. Nguyen P, Derreumaux P (2014) Understanding amyloid fibril nucleation and Aβ oligomer/drug interactions from computer simulations. Acc Chem Res 47:603–611

    Article  CAS  PubMed  Google Scholar 

  15. Jiang L, Liu C, Leibly D, Landau M, Zhao M, Hughes MP, Eisenberg DS (2013) Structure-based discovery of fiber-binding compounds that reduce the cytotoxicity of amyloid beta. elife 2:e00857

    PubMed  PubMed Central  Google Scholar 

  16. Necula M, Breydo L, Milton S, Kayed R, van der Veer WE, Tone P, Glabe CG (2007) Methylene blue inhibits amyloid Aβ oligomerization by promoting fibrillization. Biochemistry 46:8850–8860

    Article  CAS  PubMed  Google Scholar 

  17. Bieschke J, Herbst M, Wiglenda T, Friederich RP, Boeddrich A, Schiele F, Kleckers D, Lopez del Amo JM, Gruning BA, Wang Q, Schmidt MR, Lurz R, Anwyl R, Schnoegl S, Fandrich M, Frank RF, Reif B, Gunther S, Walsh DM, Wanker EE (2011) Small-molecule conversion of toxic oligomers to nontoxic sheet-rich amyloid fibrils. Nat Chem Biol 8:93–101

    Article  PubMed  Google Scholar 

  18. Landau M, Sawaya MR, Faull KF, Laganowsky A, Jiang L, Sievers SA, Liu J, Barrio JR, Eisenberg D (2011) Towards a pharmacophore for amyloid. PLoS Biol 9:e1001080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Schirmer RH, Adler H, Pickhardt M, Mandelkow E (2011) Lest we forget you—methylene blue. Neurobiol Aging 32:2325.e7–2325.16

    Article  CAS  Google Scholar 

  20. Petzer A, Harvey BH, Wegener G, Petzer JP (2012) Azure B, a metabolite of methylene blue, is a high-potency, reversible inhibitor of monoamine oxidase. Toxicol Appl Pharmacol 258:403–409

    Article  CAS  PubMed  Google Scholar 

  21. Wu G, Roberson DH, Brooks CL III, Vieth M (2003) Detailed analysis of grid-based molecular docking: a case study of CDOCKER- A CHARMm-based MD docking algorithm. J Comput Chem 24:1549–1562

    Article  CAS  PubMed  Google Scholar 

  22. Colletier JP, Laganowsky A, Landau M, Zhao M, Soriaga AB, Goldschmidt L, Flot D, Cascio D, Sawaya MR, Eisenberg D (2011) Molecular basis for amyloid-β polymorphism. Proc Natl Acad Sci U S A 108:16938–16943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Petkova A, Yau W, Tycko R (2006) Experimental constraints on the quaternary structure in Alzheimer’s beta-amyloid fibrils. Biochemistry 45:498–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Walti MA, Ravotti F, Arai H, Glabe CG, Wall JS, Bockmann A, Guntert P, Meier BH, Riek R (2016) Atomic-resolution structure of a disease-relevant Aβ(1–42) amyloid fibril. Proc Natl Acad Sci U S A 113:E4976–E4984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Colvin MT, Silvers R, Frohm B, Su Y, Linse S, Griffin RG (2015) High resolution structural characterization of Aβ42 amyloid fibrils by magic angle spinning NMR. J Am Chem Soc 137:7509–7518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rao PPN, Mohamed T, Teckwani K, Tin G (2015) Curcumin binding to beta amyloid: a computational study. Chem Biol Drug Des 86:813–820

    Article  CAS  PubMed  Google Scholar 

  27. Lopez de la Paz M, Serrano L (2004) Sequence determinants of amyloid fibril formation. Proc Natl Acad Sci U S A 101:87–92

    Article  CAS  PubMed  Google Scholar 

  28. Pastor MT, Esteras-Chopo A, Serrano L (2007) Hacking the code of amyloid formation. Prion 1:9–14

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The PPNR would like to thank the University of Waterloo, NSERC-Discovery RGPIN 03830-2014, and Ministry of Research and Innovation, Government of Ontario, Canada, for an Early Researcher Award (ERA) for the financial support. DD also thanks the National Institutes of Health (R15GM116006) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Praveen P. N. Rao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Rao, P.P.N., Du, D. (2018). In Silico Strategies to Design Small Molecules to Study Beta-Amyloid Aggregation. In: Roy, K. (eds) Computational Modeling of Drugs Against Alzheimer’s Disease. Neuromethods, vol 132. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7404-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7404-7_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7403-0

  • Online ISBN: 978-1-4939-7404-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics