Skip to main content

High-Throughput Phenotyping in Plant Stress Response: Methods and Potential Applications to Polyamine Field

  • Protocol
  • First Online:
Polyamines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1694))

Abstract

High-throughput phenotyping has opened whole new perspectives for crop improvement and better understanding of quantitative traits in plants. Generation of loss-of-function and gain-of-function plant mutants requires processing and imaging a large number of plants in order to determine unknown gene functions and phenotypic changes generated by genetic modifications or selection of new traits. The use of phenomics for the evaluation of transgenic lines contributed significantly to the identification of plants more tolerant to biotic/abiotic stresses and furthermore, helped in the identification of unknown gene functions. In this chapter we describe the High-throughput phenotyping (HTP) platform working in our facility, drawing the general protocol and showing some examples of data obtainable from the platform. Tomato transgenic plants over-expressing the arginine decarboxylase 2 gene, which is involved in the polyamine biosynthetic pathway, were analyzed through our HTP facility for their tolerance to abiotic stress and significant differences in water content and ability to recover after drought stress where highlighted. This demonstrates the applicability of this methodology to the plant polyamine field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Mishra KB, Mishra A, Klem K, Govindjee (2016) Plant phenotyping: a perspective. Indian J Plant Physiol 21(4):514–527

    Article  Google Scholar 

  2. Fiorani F, Schurr U (2013) Future scenarios for plant phenotyping. Annu Rev Plant Biol 64:267–291

    Article  CAS  PubMed  Google Scholar 

  3. Li L, Zhang Q, Huang D (2014) A review of imaging techniques for plant phenotyping. Sensors (Basel) 14(11):20078–20111

    Article  Google Scholar 

  4. Houle D, Govindaraju DR, Omholt S (2010) Phenomics: the next challenge. Nat Rev Genet 11(12):855–866

    Article  CAS  PubMed  Google Scholar 

  5. Montes JM, Melchinger AE, Reif JC (2007) Novel throughput phenotyping platforms in plant genetic studies. Trends Plant Sci 12(10):433–436

    Article  CAS  PubMed  Google Scholar 

  6. Furbank RT, Tester M (2011) Phenomics—technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16(12):635–644

    Article  CAS  PubMed  Google Scholar 

  7. Araus JL, Li J, Parry MA, Wang J (2014) Phenotyping and other breeding approaches for a new green revolution. J Integr Plant Biol 56(5):422–424

    Article  PubMed  Google Scholar 

  8. Fahlgren N, Gehan MA, Baxter I (2015) Lights, camera, action: high-throughput plant phenotyping is ready for a close-up. Curr Opin Plant Biol 24:93–99

    Article  PubMed  Google Scholar 

  9. Halperin O, Gebremedhin A, Wallach R, Moshelion M (2016) High-throughput physiological phenotyping and screening system for the characterization of plant-environment interactions. Plant J 89(4):839–850

    Article  CAS  Google Scholar 

  10. Tiburcio AF, Altabella T, Bitrian M, Alcazar R (2014) The roles of polyamines during the lifespan of plants: from development to stress. Planta 240(1):1–18

    Article  CAS  PubMed  Google Scholar 

  11. Alcazar R, Planas J, Saxena T, Zarza X, Bortolotti C, Cuevas J, Bitrian M, Tiburcio AF, Altabella T (2010) Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants over-expressing the homologous Arginine decarboxylase 2 gene. Plant Physiol Biochem 48(7):547–552

    Article  CAS  PubMed  Google Scholar 

  12. Rungrat T, Awlia M, Brown T, Cheng R, Sirault X, Fajkus J, Trtilek M, Furbank B, Badger M, Tester M, Pogson BJ, Borevitz JO, Wilson P (2016) Using phenomic analysis of photosynthetic function for abiotic stress response gene discovery. Arabidopsis Book 14:e0185

    Article  PubMed  PubMed Central  Google Scholar 

  13. Awlia M, Nigro A, Fajkus J, Schmoeckel SM, Negrão S, Santelia D, Trtílek M, Tester M, Julkowska MM, Panzarová K (2016) High-throughput non-destructive phenotyping of traits that contribute to salinity tolerance in Arabidopsis thaliana. Front Plant Sci 7:1414

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mishra KB, Iannacone R, Petrozza A, Mishra A, Armentano N, La Vecchia G, Trtilek M, Cellini F, Nedbal L (2012) Engineered drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission. Plant Sci 182:79–86

    Article  CAS  PubMed  Google Scholar 

  15. Petrozza A, Summerer S, Di Tommaso G, Di Tommaso D, Piaggesi A (2013) An evaluation of tomato plant root development and morpho-physiological response treated with VIVA® by image analysis. In: ISHS, Leuven, Belgium, pp 155–159

    Google Scholar 

  16. Summerer S, Petrozza A, Cellini F (2013) High throughput plant phenotyping: a new and objective method to detect and analyse the biostimulant properties of different products. In: ISHS, Leuven, Belgium, pp 143–148

    Google Scholar 

  17. Petrozza A, Summerer S, Di Tommaso G, Di Tommaso D, Piaggesi A (2013) Evaluation of the effect of RADIFARM® treatment on the morpho-physiological characteristics of root systems via image analysis. In: ISHS, Leuven, Belgium, pp 149–153

    Google Scholar 

  18. Iannacone R (2010) Translational biology approaches to improve abiotic stress tolerance in tomato. Paper presented at third meeting of FA0605: plant abiotic stress: from signalling to crop improvement, Valencia, Spain, 22nd–24th Apr 2010

    Google Scholar 

  19. Eberius M, Lima-Guerra J (2009) High-throughput plant phenotyping – data acquisition, transformation and analysis. Bioinformatics 7:259–278

    Google Scholar 

  20. Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  PubMed  Google Scholar 

  21. Oxborough K (2004) Imaging of chlorophyll a fluorescence: theoretical and practical aspects of an emerging technique for the monitoring of photosynthetic performance. J Exp Bot 55(400):1195–1205

    Article  CAS  PubMed  Google Scholar 

  22. Buschmann C, Lichtenthaler HK (1998) Principles and characteristics of multi-colour fluorescence imaging of plants. J Plant Physiol 152(2–3):297–314

    Article  CAS  Google Scholar 

  23. Gorbe E, Calatayud A (2012) Applications of chlorophyll fluorescence imaging technique in horticultural research: a review. Sci Hortic 138:24–35

    Article  CAS  Google Scholar 

  24. Knipling EB (1970) Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sens Environ 1(3):155–159

    Article  Google Scholar 

  25. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kumar A, Taylor M, Altabella T, Tiburcio AF (1997) Recent advances in polyamine research. Trends Plant Sci 2(4):124–130

    Article  Google Scholar 

Sitography

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Iannacone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Marko, D., Briglia, N., Summerer, S., Petrozza, A., Cellini, F., Iannacone, R. (2018). High-Throughput Phenotyping in Plant Stress Response: Methods and Potential Applications to Polyamine Field. In: Alcázar, R., Tiburcio, A. (eds) Polyamines. Methods in Molecular Biology, vol 1694. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7398-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7398-9_31

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7397-2

  • Online ISBN: 978-1-4939-7398-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics