Skip to main content

Techniques Used for Functional Characterization of Polyamine Transporters

  • Protocol
  • First Online:
Polyamines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1694))

Abstract

Transport systems are key processes in every living organism: they allow the entry of all essential nutrients into the cell and its compartments and regulate the intracellular concentrations of metabolites. The transport of cell nutrients represents the first step of many metabolic routes and may also regulate such processes. They are also responsible for reaching the effective intracellular concentration of therapeutic drugs and some mechanisms of resistance and tolerance also depend on them. However, the common techniques used to evaluate the metabolites transport in different cells types are not easy to carry out and require extensive training. In this chapter, we report detailed protocols and tips about the expression of transporters, different activity assays and transporter kinetics determination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Silber AM, Colli W, Ulrich H, Alves MJ, Pereira CA (2005) Amino acid metabolic routes in Trypanosoma cruzi: possible therapeutic targets against Chagas’ disease. Curr Drug Targets Infect Disord 5:53–64

    Article  CAS  PubMed  Google Scholar 

  2. Pereira CA, Saye M, Wrenger C, Miranda MR (2014) Metabolite transporters in trypanosomatid parasites: promising therapeutic targets but... How to deal with them? Curr Med Chem 21:1707–1712. doi:CMC-EPUB-55425 [pii]

    Article  CAS  PubMed  Google Scholar 

  3. Camargo EP (1964) Growth and differentiation differentiation in Trypanosoma cruzi. I. Origin of metacyclic trypanosomes in liquid media. Rev Inst Med Trop Sao Paulo 6:93–100

    PubMed  CAS  Google Scholar 

  4. Pereira CA, Alonso GD, Ivaldi S, Silber AM, Alves MJ, Torres HN, Flawia MM (2003) Arginine kinase overexpression improves Trypanosoma cruzi survival capability. FEBS Lett 554:201–205. doi:S0014579303011712 [pii]

    Article  CAS  PubMed  Google Scholar 

  5. Le Quesne SA, Fairlamb AH (1996) Regulation of a high-affinity diamine transport system in Trypanosoma cruzi epimastigotes. Biochem J 316:481–486

    Article  PubMed  PubMed Central  Google Scholar 

  6. Vazquez MP, Levin MJ (1999) Functional analysis of the intergenic regions of TcP2beta gene loci allowed the construction of an improved Trypanosoma cruzi expression vector. Gene 239:217–225. doi:S0378111999003868 [pii]

    Article  CAS  PubMed  Google Scholar 

  7. Martinez-Calvillo S, Lopez I, Hernández R (1997) pRIBOTEX expression vector: a pTEX derivative for a rapid selection of Trypanosoma cruzi transfectants. Gene 199:71–76. doi:S0378-1119(97)00348-X [pii]

    Article  CAS  PubMed  Google Scholar 

  8. Kelly JM, Ward HM, Miles MA, Kendall G (1992) A shuttle vector which facilitates the expression of transfected genes in Trypanosoma cruzi and Leishmania. Nucleic Acids Res 20:3963–3969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Taylor MC, Kelly JM (2006) pTcINDEX: a stable tetracycline-regulated expression vector for Trypanosoma cruzi. BMC Biotechnol 6:32. doi:10.1186/1472-6750-6-32

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Le Quesne SA, Fairlamb AH (1998) Measurement of polyamine transport. Cells in suspension. Methods Mol Biol 79:149–156

    PubMed  Google Scholar 

  11. Pereira CA, Alonso GD, Paveto MC, Flawia MM, Torres HN (1999) L-arginine uptake and L-phosphoarginine synthesis in Trypanosoma cruzi. J Eukaryot Microbiol 46:566–570

    Article  CAS  PubMed  Google Scholar 

  12. Van Winkle LJ, Bussolati O, Gazzola G, McGiven J, Mackenzie B, Saier MH Jr, Taylor PM, Rennie MJ, Low SY (1999) Chapter 4 Transport kinetics: biomembrane transport. Academic Press, San Diego, pp 65–131. doi:10.1016/B978-012714510-5/50005-2

    Book  Google Scholar 

  13. Kotyk A (1975) Cell membrane transport: principles and techniques. Arnost Kotyk and Karel Janacek; in collaboration with the staff of the Laboratory for Cell Membrane Transport, Czechoslovak Academy of Sciences. vol. Plenum Press, New York. Accessed from http://nla.gov.au/nla.cat-vn1835476.

  14. Lees P, Cunningham FM, Elliott J (2004) Principles of pharmacodynamics and their applications in veterinary pharmacology. J Vet Pharmacol Ther 27:397–414. doi:10.1111/j.1365-2885.2004.00620.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP 2010-0685, 2011-0263, and 2013-0664), Agencia Nacional de Promoción Científica y Tecnológica (FONCYT PICT 2012-0559, 2013-2218 and 2015-0539). CAP, MRM are members of the career of scientific investigator; CR and MS are research fellows from CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio A. Pereira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Pereira, C.A., Sayé, M., Reigada, C., Miranda, M.R. (2018). Techniques Used for Functional Characterization of Polyamine Transporters. In: Alcázar, R., Tiburcio, A. (eds) Polyamines. Methods in Molecular Biology, vol 1694. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7398-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7398-9_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7397-2

  • Online ISBN: 978-1-4939-7398-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics