Skip to main content

Determination of S-Adenosylmethionine Decarboxylase Activity in Plants

  • Protocol
  • First Online:
Polyamines

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1694))

Abstract

The synthesis of spermidine, spermine and thermospermine requires the addition of aminopropyl groups from decarboxylated S-adenosyl-methionine (dSAM). The synthesis of dSAM is catalyzed by S-adenosylmethionine decarboxylase. dSAM levels are usually low, which constitutes a rate-limiting factor in the synthesis of polyamines. In this chapter, we provide a protocol for the determination of SAMDC activity in plants through the detection of radiolabelled CO2 released during the SAMDC reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Slocum RD (1991) Polyamine biosynthesis in plants. In: Slocum RD, Flores HE (eds) Biochemistry and physiology of polyamines in plants. CRC Press, Boca Raton, FL, pp 23–40

    Google Scholar 

  2. Tiburcio AF, Altabella T, Borrell A, Masgrau C (1997) Polyamine metabolism and its regulation. Physiol Plant 100:664–674

    Article  CAS  Google Scholar 

  3. Wallace HM, Fraser AV, Hughes A (2003) A perspective of polyamine metabolism. Biochem J 376:1–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pegg AE (2009) S-adenosylmethionine decarboxylase. Biochemical Society Essays Biochem 46:25–45

    Article  CAS  Google Scholar 

  5. Tabor H, Rosenthal SM, Tabor CW (1958) The biosynthesis of spermidine and spermine from putrescine and methionine. J Biol Chem 233:907–914

    PubMed  CAS  Google Scholar 

  6. Even-Chen Z, Mattoo AK, Goren R (1982) Inhibition of ethylene biosynthesis by aminoethoxyvinylglycine and by polyamines shunts label from 3,4-[C]methionine into spermidine in aged orange peel discs. Plant Physiol 69:385–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Greenberg ML, Cohen SS (1985) Dicyclohexylamine-induced shift of biosynthesis from spermidine to spermine in plant protoplasts. Plant Physiol 78:568–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hibasami H, Hoffman JL, Pegg AE (1980) Decarboxylated S-adenosylmethionine in mammalian cells. J Biol Chem 255:6675–6678

    PubMed  CAS  Google Scholar 

  9. Tiburcio AF, Kaur-Sawhney R, Galston AW (1990) Polyamine metabolism. In: Intermediary N metabolism. The biochemistry of plants. Academic Press, San Diego, CA, pp 238–325

    Google Scholar 

  10. Pegg AE, Williams-Ashman HG (1968) Stimulation of the decarboxylation of S-adenosylmethionine by putrescine in mammalian tissues. Biochem Biophys Res Commun 30:76–82

    Article  CAS  PubMed  Google Scholar 

  11. Suzuki Y, Hirasawa E (1980) S-adenosylmethionine decarboxylase of corn seedlings. Plant Physiol 66:1091–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yamanoha B, Cohen SS (1985) S-adenosylmethionine decarboxylase and spermidine synthase from Chinese cabbage. Plant Physiol 178:784–790

    Article  Google Scholar 

  13. Xiong H, Stanley BA, Tekwani BL, Pegg AE (1997) Processing of mammalian and plant S-adenosylmethionine decarboxylase proenzymes. J Biol Chem 272:28342–28348

    Article  CAS  PubMed  Google Scholar 

  14. Tassoni A, van Buuren M, Franceschetti M, Fornale S, Bagni N (2000) Polyamine content and metabolism in Arabidopsis thaliana and effect of spermidine on plant development. Plant Physiol Biochem 38:383–393

    Article  CAS  Google Scholar 

  15. Bennett EM, Ekstrom JL, Pegg AE, Ealick SE (2002) Monomeric S-adenosylmethionine decarboxylase from plants provides an alternative to putrescine stimulation. Biochemistry 41:14509–14517

    Article  CAS  PubMed  Google Scholar 

  16. Bertoldi D, Tassoni A, Martinelli L, Bagni N (2004) Polyamines and somatic embryogenesis in two Vitis vinifera cultivars. Physiol Plant 120:657–666

    Article  CAS  PubMed  Google Scholar 

  17. Franceschetti M, Hanfrey C, Scaramagli S, Torrigiani P, Bagni N, Burtin D, Michael AJ (2001) Characterization of monocot and dicot plant S-adenosyl-l-methionine decarboxylase gene families including identification in the mRNA of a highly conserved pair of upstream overlapping open reading frames. Biochem J 353:403–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tassoni A, Franceschetti M, Tasco G, Casadio R, Bagni N (2007) Cloning, functional identification and structural modelling of Vitis vinifera S-adenosyl methionine decarboxylase. J Plant Physiol 164:1208–1219

    Article  CAS  PubMed  Google Scholar 

  19. Tiburcio AF, Kaur-Sawhney R, Galston AW (1993) Spermidine biosynthesis as affected by osmotic stress in oat leaves. Plant Growth Regul 13:103–109

    Article  CAS  Google Scholar 

  20. Slocum RD, Galston AW (1987) Inhibitors of polyamine biosynthesis in plants and plant pathogenic fungi. In: McCann PP, Pegg AE, Sjodersma A (eds) Inhibition of polyamine metabolism. Academic Press Inc., San Diego, CA, pp 305–315

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio F. Tiburcio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Tiburcio, A.F., Alcázar, R. (2018). Determination of S-Adenosylmethionine Decarboxylase Activity in Plants. In: Alcázar, R., Tiburcio, A. (eds) Polyamines. Methods in Molecular Biology, vol 1694. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7398-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7398-9_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7397-2

  • Online ISBN: 978-1-4939-7398-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics