Skip to main content

Synthetic Biology to Engineer Bacteriophage Genomes

  • Protocol
  • First Online:
Bacteriophage Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1693))

Abstract

Recent advances in the synthetic biology field have enabled the development of new molecular biology techniques used to build specialized bacteriophages with new functionalities. Bacteriophages have been engineered towards a wide range of applications including pathogen control and detection, targeted drug delivery, or even assembly of new materials.

In this chapter, two strategies that have been successfully used to genetically engineer bacteriophage genomes are addressed: a yeast-based platform and bacteriophage recombineering of electroporated DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clark JR, March JB (2006) Bacteriophages and biotechnology: vaccines, gene therapy and antibacterials. Trends Biotechnol 24:212–218

    Article  CAS  PubMed  Google Scholar 

  2. Kutter E, Vos DD, Gvasalia G, Alavidze Z, Gogokhia L, Kuhl S, Abedon ST (2010) Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 11:69–86

    Article  CAS  PubMed  Google Scholar 

  3. Endersen L, O'Mahony J, Hill C, Ross RP, McAuliffe O, Coffey A (2014) Phage therapy in the food industry. Annu Rev Food Sci Technol 5:327–349

    Article  CAS  PubMed  Google Scholar 

  4. Jones JB, Jackson LE, Balogh B, Obradovic A, Iriarte FB, Momol MT (2007) Bacteriophages for plant disease control. Annu Rev Phytopathol 45:245–262

    Article  CAS  PubMed  Google Scholar 

  5. Monk AB, Rees CD, Barrow P, Hagens S, Harper DR (2010) Bacteriophage applications: where are we now? Lett Appl Microbiol 51:363–369

    Article  CAS  PubMed  Google Scholar 

  6. Schmelcher M, Loessner MJ (2014) Application of bacteriophages for detection of foodborne pathogens. Bacteriophage 4:e28137

    Article  PubMed  PubMed Central  Google Scholar 

  7. Lu TK, Bowers J, Koeris MS (2013) Advancing bacteriophage-based microbial diagnostics with synthetic biology. Trends Biotechnol 31:325–327

    Article  CAS  PubMed  Google Scholar 

  8. Yacoby I, Bar H, Benhar I (2007) Targeted drug-carrying bacteriophages as antibacterial nanomedicines. Antimicrob Agents Chemother 51:2156–2163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pande J, Szewczyk MM, Grover AK (2010) Phage display: concept, innovations, applications and future. Biotechnol Adv 28:849–858

    Article  CAS  PubMed  Google Scholar 

  10. Fehér T, Karcagi I, Blattner FR, Pósfai G (2012) Bacteriophage recombineering in the lytic state using the lambda red recombinases. Microb Biotechnol 5:466–476

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pires DP, Cleto S, Sillankorva S, Azeredo J, Lu TK (2016) Genetically engineered phages: a review of advances over the last decade. Microbiol Mol Biol Rev 80:523–543

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lu TKT, Koeris MS, Chevalier BS, Holder JW, McKenzie GJ, Brownell DR (2013) Recombinant phage and methods. Patents no. US20130122549 A1

    Google Scholar 

  13. Ando H, Lemire S, Pires DP, Lu TK (2015) Engineering modular viral scaffolds for targeted bacterial population editing. Cell Syst 1:187–196

    Google Scholar 

  14. Marinelli LJ, Piuri M, Swigoňová Z, Balachandran A, Oldfield LM, van Kessel JC, Hatfull GF (2008) BRED: a simple and powerful tool for constructing mutant and recombinant bacteriophage genomes. PLoS One 3:e3957

    Article  PubMed  PubMed Central  Google Scholar 

  15. Marinelli L, Hatfull G, Piuri M (2012) Recombineering: A powerful tool for modification of bacteriophage genomes. Bacteriophage 2:5–14

    Article  PubMed  PubMed Central  Google Scholar 

  16. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  CAS  PubMed  Google Scholar 

  17. Murphy KC (2007) The λ Gam protein inhibits RecBCD binding to dsDNA ends. J Mol Biol 371:19–24

    Article  CAS  PubMed  Google Scholar 

  18. Court R, Cook N, Saikrishnan K, Wigley D (2007) The crystal structure of λ-Gam protein suggests a model for RecBCD inhibition. J Mol Biol 371:25–33

    Article  CAS  PubMed  Google Scholar 

  19. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci 97:6640–6645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu K, Hua J, Roberts KJ, Figurski DH (2012) Production of recombineering substrates with standard-size PCR primers. FEMS Microbiol Lett 337:97–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Swaminathan S, Ellis HM, Waters LS, Yu D, Lee EC, Court DL, Sharan SK (2001) Rapid engineering of bacterial artificial chromosomes using oligonucleotides. Genesis 29:14–21

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the project PTDC/BBB-BSS/6471/2014, the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684), and under the scope of the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462). This work was also supported by BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020 – Programa Operacional Regional do Norte. Ana Rita Costa, Catarina Milho and Diana Priscila Pires acknowledge FCT for the grants SFRH/BPD/94648/2013, SFRH/BD/94434/2013 and SFRH/BPD/116187/2016, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Priscila Pires .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rita Costa, A., Milho, C., Azeredo, J., Pires, D.P. (2018). Synthetic Biology to Engineer Bacteriophage Genomes. In: Azeredo, J., Sillankorva, S. (eds) Bacteriophage Therapy. Methods in Molecular Biology, vol 1693. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7395-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7395-8_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7394-1

  • Online ISBN: 978-1-4939-7395-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics