Skip to main content

Bacteriophage Production in Bioreactors

  • Protocol
  • First Online:
Book cover Bacteriophage Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1693))

Abstract

The optimal conditions for the production of virulent bacteriophages in bioreactors can vary greatly depending on the host–bacteriophage system used. We present a general method for the production of virulent bacteriophages in bioreactors that can be adapted to many host–bacteriophage systems and various operating conditions (reactor volume, medium composition, temperature, etc.). The procedures detail how to establish optimal initial infection conditions (infection load and initial multiplicity of infection (MOI)), prepare the host pre-culture and bioreactor, operate the bioreactor, and harvest the bacteriophage product. Batch operation is detailed but a short discussion addresses other modes of operation, namely two-stage continuous bioreactors and two-stage cycling bioreactors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wyckoff RWG (1947) Symmetrical patterns of bacteriophage production. Proc Soc Exp Biol Med 66:42–44

    Article  Google Scholar 

  2. Kozinski AW, Mitchell M (1969) Restoration by chloramphenicol of bacteriophage production in Escherichia coli B infected with a ligase-deficient amber mutant. J Virol 4:823–836

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Terzaghi BE, Sandine WE (1981) Bacteriophage production following exposure of lactic Streptococci to ultraviolet radiation. J Gen Microbiol 122:305–311

    Google Scholar 

  4. Ajl SJ (1950) Metabolic studies on T2 Escherichia coli bacteriophage. J Bacteriol 60:393–399

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sargeant K, Yeo KG, Lethbridge JH et al (1968) Production of bacteriophage T7. Appl Microbiol 16:1483–1488

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Chen MSK, Nagai S, Humphrey AE (1971) A mathematical model for RNA bacteriophage production in batch culture. Biotechnol Bioeng 13:257–270

    Article  CAS  PubMed  Google Scholar 

  7. Werquin M, Defives C, Hassani L et al (1984) Large scale preparation of Rhizobium Meliloti bacteriophages by fermenter culture. J Virol Methods 8:155–160

    Article  CAS  PubMed  Google Scholar 

  8. Maniatis T, Sambrook J, Fritsch EF (eds) (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press

    Google Scholar 

  9. Grieco SH, Wong AY, Dunbar WS et al (2012) Optimization of fermentation parameters in phage production using response surface methodology. J Ind Microbiol Biotechnol 39:1515–1522

    Article  CAS  PubMed  Google Scholar 

  10. Hadas H, Einav M, Fishov I et al (1997) Bacteriophage T4 development depends on the physiology of its host Escherichia coli. Microbiology 143:179–185

    Article  CAS  PubMed  Google Scholar 

  11. Sauvageau D, Cooper DG (2010) Two-stage, self-cycling process for the production of bacteriophages. Microb Cell Factories 9:81

    Article  Google Scholar 

  12. Fogler S (2011) Essentials of chemical engineering. Pearson Education, Boston, MA

    Google Scholar 

  13. Clark DW, Meyer H-P, Leist C, Fiechter A (1986) Effects of growth medium on phage production and induction in Escherichia coli K-12 lambda lysogens. J Biotechnol 3:271–280

    Article  CAS  Google Scholar 

  14. Williams H (2012) Coevolving parasites improve host evolutionary search on structured fitness landscapes. Biol Lett 13:129–136

    Google Scholar 

  15. Horne MT (1970) Coevolution of Escherichia coli and bacteriophages in chemostat culture. Science 168:992–993

    Article  CAS  PubMed  Google Scholar 

  16. Levin BR, Stewart FM, Chao L (1977) Resource-limited growth, competition, and predation: a model and experimental studies with bacteria and bacteriophage. Am Nat 111:3–24

    Article  Google Scholar 

  17. Lenski RE, Levin BR (1985) Constraints on the coevolution of bacteria and virulent phage: a model, some experiments, and predictions for natural communities. Am Nat 125:585–602

    Article  Google Scholar 

  18. Bohannan BJM, Lenski RE (1997) Effect of resource enrichment on a chemostat community of bacteria and bacteriophage. Ecology 78:2303–2315

    Article  Google Scholar 

  19. Mizoguchi K, Morita M, Fischer CR et al (2003) Coevolution of bacteriophage PP01 and Escherchia coli O157:H7 in continuous culture. Appl Environ Microbiol 69:170–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Forde SE, Thompson JN, Bohannan BJM (2004) Adaptation varies through space and time in a coevolving host-parasitoid interaction. Nature 431:841–844

    Article  CAS  PubMed  Google Scholar 

  21. Wichman HA, Millstein J, Bull JJ (2005) Adaptive molecular evolution for 13,000 phage generations: a possible arms race. Genetics 170:19–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kermack WO, McKendrick AG (1927) Contributions to the mathematical theory of epidemics I. Bull Math Biol 53:22–55. (reprinted 1991)

    Google Scholar 

  23. Kermack WO, McKendrick AG (1932) Contributions to the mathematical theory of epidemics II. The problem of endemicity. Bull Math Biol 53:57–87. (reprinted 1991)

    Google Scholar 

  24. Bull JJ, Millstein J, Orcutt J et al (2006) Evolutionary feedback mediated through population density, illustrated with viruses in chemostats. Am Nat 167:E39–E51

    Article  CAS  PubMed  Google Scholar 

  25. Husimi Y, Nishigaki K, Kinoshita Y et al (1982) Cellstat: a continuous culture system of a bacteriophage for the study of the mutation rate and the selection process at the DNA level. Rev Sci Instr 53:517–522

    Article  CAS  Google Scholar 

  26. Park TH, Seo JH, Lim HC (1991) Two-stage fermentation with bacteriophage λ as an expression vector in Escherichia coli. Biotechnol Bioeng 37:297–302

    Article  CAS  PubMed  Google Scholar 

  27. Chen BY, Lim HC (1996) Bioreactor studies on temperature induction of the Q-mutant of bacteriophage λ in Escherichia coli. J Biotechnol 51:1–20

    Article  CAS  PubMed  Google Scholar 

  28. Oh JS, Cho D, Park TH (2005) Two-stage continuous operation of recombinant Escherichia coli using the bacteriophage λ Q-vector. Bioprocess Biosyst Eng 28:1–7

    Article  CAS  PubMed  Google Scholar 

  29. Baldwin D, Summer NS (2012) Process for continuous production of bacteriophages. US Patent US8252519 B2, 28 Aug 2012

    Google Scholar 

  30. Chen XA, Cen PL (2005) A novel three-stage process for continuous production of penicillin G acylase by a temperature-sensitive expression system of Bacillus subtilis phage phi105. Chem Biochem Eng Q 19:376–372

    Google Scholar 

  31. Storms ZJ, Brown T, Sauvageau D et al (2012) Self-cycling operation increases productivity of recombinant protein in Escherichia coli. Biotechol Bioeng 109:2262–2270

    Article  CAS  Google Scholar 

  32. Storms ZJ, Brown T, Cooper DG et al (2014) Impact of the cell life-cycle on bacteriophage T4 infection. FEMS Microbiol Lett 353:63–68

    Article  CAS  PubMed  Google Scholar 

  33. Adams MH (1959) Bacteriophages. Interscience Publishers, New York, NY

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic Sauvageau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Agboluaje, M., Sauvageau, D. (2018). Bacteriophage Production in Bioreactors. In: Azeredo, J., Sillankorva, S. (eds) Bacteriophage Therapy. Methods in Molecular Biology, vol 1693. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7395-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7395-8_15

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7394-1

  • Online ISBN: 978-1-4939-7395-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics