Skip to main content

In Vivo Bacteriophage Biodistribution

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1693))

Abstract

At the dawn of the renaissance of bacteriophage therapy, the full acceptation of bacteriophages as anti-bacterial agents requires the determination of their basic pharmacokinetic parameters. Such data, known for all conventional drugs used in human and veterinary medicine, allow optimizing dose regimens, efficacy, and help to limit toxicity. Here, we describe basic methods to experimentally obtain pharmacokinetic data and give also examples of data calculation to determine key parameters related to the biodistribution and elimination of bacteriophages in vivo.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ding H, Wu F (2012) Image guided biodistribution and pharmacokinetic studies of theranostics. Theranostics 2(11):1040–1053. https://doi.org/10.7150/thno.4652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Isin EM, Elmore CS, Nilsson GN, Thompson RA, Weidolf L (2012) Use of radiolabeled compounds in drug metabolism and pharmacokinetic studies. Chem Res Toxicol 25(3):532–542. https://doi.org/10.1021/tx2005212

    Article  CAS  PubMed  Google Scholar 

  3. Matthews PM, Rabiner EA, Passchier J, Gunn RN (2012) Positron emission tomography molecular imaging for drug development. Br J Clin Pharmacol 73(2):175–186. https://doi.org/10.1111/j.1365-2125.2011.04085.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Perkins AC, Pimm MV, Wilson CG (1994) Gamma scintigraphy in the delivery, biodistribution and targeting of therapeutic agents. J Nucl Biol Med 38(4 Suppl 1):113–118

    CAS  PubMed  Google Scholar 

  5. Vasquez KO, Casavant C, Peterson JD (2011) Quantitative whole body biodistribution of fluorescent-labeled agents by non-invasive tomographic imaging. PLoS One 6(6):e20594. https://doi.org/10.1371/journal.pone.0020594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Palm S, Enmon RM Jr, Matei C, Kolbert KS, Xu S, Zanzonico PB, Finn RL, Koutcher JA, Larson SM, Sgouros G (2003) Pharmacokinetics and Biodistribution of (86)Y-Trastuzumab for (90)Y dosimetry in an ovarian carcinoma model: correlative MicroPET and MRI. J Nucl Med 44(7):1148–1155

    CAS  PubMed  Google Scholar 

  7. Geier MR, Trigg ME, Merril CR (1973) Fate of bacteriophage lambda in non-immune germ-free mice. Nature 246(5430):221–223

    Article  CAS  PubMed  Google Scholar 

  8. Inchley CJ (1969) The actvity of mouse Kupffer cells following intravenous injection of T4 bacteriophage. Clin Exp Immunol 5(1):173–187

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Nungester WJ, Watrous RM (1934) Accumulation of bacteriophage in spleen and liver following its intravenous inoculation. Proc Soc Exp Biol Med 31:901–905

    Article  Google Scholar 

  10. Yip YL, Hawkins NJ, Smith G, Ward RL (1999) Biodistribution of filamentous phage-Fab in nude mice. J Immunol Methods 225(1-2):171–178

    Article  CAS  PubMed  Google Scholar 

  11. Zou J, Dickerson MT, Owen NK, Landon LA, Deutscher SL (2004) Biodistribution of filamentous phage peptide libraries in mice. Mol Biol Rep 31(2):121–129

    Article  CAS  PubMed  Google Scholar 

  12. Singla S, Harjai K, Raza K, Wadhwa S, Katare OP, Chhibber S (2016) Phospholipid vesicles encapsulated bacteriophage: a novel approach to enhance phage biodistribution. J Virol Methods 236:68–76. https://doi.org/10.1016/j.jviromet.2016.07.002

    Article  CAS  PubMed  Google Scholar 

  13. Farkas ME, Aanei IL, Behrens CR, Tong GJ, Murphy ST, O'Neil JP, Francis MB (2013) PET Imaging and biodistribution of chemically modified bacteriophage MS2. Mol Pharm 10(1):69–76. https://doi.org/10.1021/mp3003754

    Article  CAS  PubMed  Google Scholar 

  14. De Paepe M, Tournier L, Moncaut E, Son O, Langella P, Petit MA (2016) Carriage of lambda latent virus is costly for its bacterial host due to frequent reactivation in monoxenic mouse intestine. PLoS Genet 12(2):e1005861. https://doi.org/10.1371/journal.pgen.1005861

    Article  PubMed  PubMed Central  Google Scholar 

  15. Abedon ST, Thomas-Abedon C (2010) Phage therapy pharmacology. Curr Pharm Biotechnol 11(1):28–47

    Article  CAS  PubMed  Google Scholar 

  16. Turner PV, Brabb T, Pekow C, Vasbinder MA (2011) Administration of substances to laboratory animals: routes of administration and factors to consider. J Am Assoc Lab Anim Sci 50(5):600–613

    CAS  PubMed  PubMed Central  Google Scholar 

  17. National Centre for the Replacement Refinement and Reduction of Animals in Research (2016) Techniques for taking blood samples from laboratory mice.. https://www.nc3rs.org.uk/mouse. Accessed August 2016

  18. Kaliss N, Pressman D (1950) Plasma and blood volumes of mouse organs, as determined with radioactive iodoproteins. Proc Soc Exp Biol Med 75(1):16–20

    Article  CAS  PubMed  Google Scholar 

  19. Linderkamp O, Berg D, Betke K, Koferl F, Kriegel H, Riegel KP (1980) Blood volume and hematocrit in various organs in newborn piglets. Pediatr Res 14(12):1324–1327. https://doi.org/10.1203/00006450-198012000-00010

    Article  CAS  PubMed  Google Scholar 

  20. Maura D, Galtier M, Le Bouguenec C, Debarbieux L (2012) Virulent bacteriophages can target O104:H4 enteroaggregative Escherichia coli in the mouse intestine. Antimicrob Agents Chemother 56(12):6235–6242. https://doi.org/10.1128/AAC.00602-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Debarbieux L, Leduc D, Maura D, Morello E, Criscuolo A, Grossi O, Balloy V, Touqui L (2010) Bacteriophages can treat and prevent Pseudomonas aeruginosa lung infections. J Infect Dis 201(7):1096–1104. https://doi.org/10.1086/651135

    Article  CAS  PubMed  Google Scholar 

  22. Dhillon S, Gill K (2006) Basic pharmacokinetics. Clinical Pharmacokinetics. Pharmaceutical Press, London

    Google Scholar 

  23. Boulanger P (2009) Purification of bacteriophages and SDS-PAGE analysis of phage structural proteins from ghost particles. Methods Mol Biol 502:227–238. https://doi.org/10.1007/978-1-60327-565-1_13

    Article  CAS  PubMed  Google Scholar 

  24. Boratynski J, Syper D, Weber-Dabrowska B, Lusiak-Szelachowska M, Pozniak G, Gorski A (2004) Preparation of endotoxin-free bacteriophages. Cell Mol Biol Lett 9(2):253–259

    CAS  PubMed  Google Scholar 

  25. Burden D (2012) Guide to the disruption of biological samples. Random Primers 12:1–25

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Debarbieux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dufour, N., Delattre, R., Debarbieux, L. (2018). In Vivo Bacteriophage Biodistribution. In: Azeredo, J., Sillankorva, S. (eds) Bacteriophage Therapy. Methods in Molecular Biology, vol 1693. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7395-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7395-8_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7394-1

  • Online ISBN: 978-1-4939-7395-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics