Skip to main content

Detection of Bioluminescent Borrelia burgdorferi from In Vitro Cultivation and During Murine Infection

  • Protocol
  • First Online:
Borrelia burgdorferi

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1690))

Abstract

Borrelia burgdorferi, etiologic agent of Lyme disease, is the leading tick-borne disease in the United States with approximately 300,000 cases diagnosed annually. Disease occurs in stages beginning localized infection at the site of a tick bite and progresses to disseminated infection when antibiotic treatment is not administered in a timely manner. A multi-systemic infection develops following dissemination to numerous immunoprotective tissues, such as the heart, bladder, and joints, resulting in late Lyme disease. B. burgdorferi undergoes dynamic genetic regulation throughout mammalian infection and defining the exact role of virulence genes at distinct stages of disease is challenging. The murine model allows for the characterization of the pathogenic function of genes in B. burgdorferi, but traditional end point studies limit the ability to gather data throughout an infection study and greatly increase the required number of mice. Molecular genetic techniques to evaluate and quantitate B. burgdorferi infection are laborious and costly. To partly circumvent these issues, a codon optimized firefly luciferase, under the control of a constitutive borrelial promoter, was introduced into B. burgdorferi enabling the characterization of mutant or modified strains under in vitro growth conditions and throughout murine infection. The detection of bioluminescent B. burgdorferi is highly sensitive and allows for the repeated real-time quantitative evaluation of borrelial load during murine infection. Furthermore, bioluminescence has also been utilized to evaluate alteration in tissue localization and tissue-specific gene expression of B. burgdorferi. In this chapter, we describe the generation of bioluminescent borrelial strains along with methods for in vitro, in vivo, and ex vivo B. burgdorferi studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steere AC, Coburn J, Glickstein L (2004) The emergence of Lyme disease. J Clin Invest 113:1093–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Stanek G, Wormser GP, Gray J, Strle F (2012) Lyme borreliosis. Lancet 379:461–473. doi:10.1016/S0140-6736(11)60103-7

    Article  PubMed  Google Scholar 

  3. Shapiro ED (2014) Lyme disease. N Engl J Med 370:1724–1731. doi:10.1056/NEJMcp1314325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mead PS (2015) Epidemiology of Lyme disease. Infect Dis Clin N Am 29:187–210. doi:10.1016/j.idc.2015.02.010

    Article  Google Scholar 

  5. Radolf JD, Caimano MJ, Stevenson B, Hu LT (2012) Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol 10:87–99. doi:10.1038/nrmicro2714

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Barbour AG (1984) Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 57:521–525

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zückert WR (2007) Laboratory maintenance of Borrelia burgdorferi. Curr Protoc Microbiol Chapter 12:Unit 12C.1. doi: 10.1002/9780471729259.mc12c01s4

  8. Samuels DS (2011) Gene regulation in Borrelia burgdorferi. Annu Rev Microbiol 65:479–499. doi:10.1146/annurev.micro.112408.134040

    Article  CAS  PubMed  Google Scholar 

  9. Miller JC (2005) Example of real-time quantitative reverse transcription-PCR (Q-RT-PCR) analysis of bacterial gene expression during mammalian infection: Borrelia burgdorferi in mouse tissues. Curr Protoc Microbiol Chapter 1D:Unit 1D.3. doi: 10.1002/9780471729259.mc01d03s00

  10. Contag CH, Contag PR, Mullins JI et al (1995) Photonic detection of bacterial pathogens in living hosts. Mol Microbiol 18:593–603

    Article  CAS  PubMed  Google Scholar 

  11. Hutchens M, Luker GD (2007) Applications of bioluminescence imaging to the study of infectious diseases. Cell Microbiol 9:2315–2322. doi:10.1111/j.1462-5822.2007.00995.x

    Article  CAS  PubMed  Google Scholar 

  12. Contag PR (2008) Bioluminescence imaging to evaluate infections and host response in vivo. Methods Mol Biol 415:101–118. doi:10.1007/978-1-59745-570-1_6

    CAS  PubMed  Google Scholar 

  13. Wiles S, Robertson BD, Frankel G, Kerton A (2009) Bioluminescent monitoring of in vivo colonization and clearance dynamics by light-emitting bacteria. Methods Mol Biol 574:137–153. doi:10.1007/978-1-60327-321-3_12

    Article  CAS  PubMed  Google Scholar 

  14. Andreu N, Zelmer A, Wiles S (2011) Noninvasive biophotonic imaging for studies of infectious disease. FEMS Microbiol Rev 35:360–394. doi:10.1111/j.1574-6976.2010.00252.x

    Article  CAS  PubMed  Google Scholar 

  15. Waidmann MS, Bleichrodt FS, Laslo T, Riedel CU (2011) Bacterial luciferase reporters: the Swiss army knife of molecular biology. Bioeng Bugs 2:8–16. doi:10.4161/bbug.2.1.13566

    Article  PubMed  Google Scholar 

  16. Francis KP, Joh D, Bellinger-Kawahara C et al (2000) Monitoring bioluminescent Staphylococcus aureus infections in living mice using a novel luxABCDE construct. Infect Immun 68:3594–3600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Blevins JS, Revel AT, Smith AH et al (2007) Adaptation of a luciferase gene reporter and lac expression system to Borrelia burgdorferi. Appl Environ Microbiol 73:1501–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hyde JA, Weening EH, Chang M et al (2011) Bioluminescent imaging of Borrelia burgdorferi in vivo demonstrates that the fibronectin-binding protein BBK32 is required for optimal infectivity. Mol Microbiol 82:99–113. doi:10.1111/j.1365-2958.2011.07801.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Skare JT, Shaw DK, Trzeciakowski JP, Hyde JA (2016) In Vivo imaging demonstrates that Borrelia burgdorferi ospC is uniquely expressed temporally and spatially throughout experimental infection. PLoS ONE 11(9):e0162501. doi: 10.1371/journal.pone.0162501

  20. Purser JE, Norris SJ (2000) Correlation between plasmid content and infectivity in Borrelia burgdorferi. Proc Natl Acad Sci U S A 97:13865–13870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Labandeira-Rey M, Skare JT (2001) Decreased infectivity in Borrelia burgdorferi strain B31 is associated with loss of linear plasmid 25 or 28-1. Infect Immun 69:446–455. doi:10.1128/IAI.69.1.446-455.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Labandeira-Rey M, Seshu J, Skare JT (2003) The absence of linear plasmid 25 or 28-1 of Borrelia burgdorferi dramatically alters the kinetics of experimental infection via distinct mechanisms. Infect Immun 71:4608–4613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chan K, Alter L, Barthold SW, Parveen N (2015) Disruption of bbe02 by insertion of a luciferase gene increases transformation efficiency of Borrelia burgdorferi and allows live imaging in Lyme disease susceptible C3H mice. PLoS One 10:e0129532. doi:10.1371/journal.pone.0129532

    Article  PubMed  PubMed Central  Google Scholar 

  24. Skare JT, Shaw DK, Trzeciakowski JP, Hyde JA (2016) In vivo imaging demonstrates that Borrelia burgdorferi ospC is uniquely expressed temporally and spatially throughout experimental infection. PLoS One 11:e0162501. doi:10.1371/journal.pone.0162501

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The previously published images modified for this chapter were supported by Public Health Service grants R01-AI058086 (to J.T.S.) and R21-AI101740-01 (to J.A.H.) from the National Institute of Allergy and Infectious Diseases. We also acknowledge Michael Norgard and Jon Blevins for the B. burgdorferi codon optimized luc gene. We also extend our gratitude to Jeffrey Cirillo, Geoffery Kapler, and Raquel Sitcheran for generously sharing equipment and resources necessary to develop these methods for B. burgdorferi. We wish to thank Kevin Francis, Will Hauser, and Brad Taylor at Perkin Elmer for their technical support and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenny A. Hyde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Hyde, J.A., Skare, J.T. (2018). Detection of Bioluminescent Borrelia burgdorferi from In Vitro Cultivation and During Murine Infection. In: Pal, U., Buyuktanir, O. (eds) Borrelia burgdorferi. Methods in Molecular Biology, vol 1690. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7383-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7383-5_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7382-8

  • Online ISBN: 978-1-4939-7383-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics