Skip to main content

Selection of Borrelia burgdorferi Promoter Sequences Active During Mammalian Infection Using In Vivo Expression Technology

  • Protocol
  • First Online:
Borrelia burgdorferi

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1690))

Abstract

In vivo expression technology (IVET) has been applied to a variety of organisms to identify active promoters in specific environments or growth conditions of interest. Here, we describe modifications to employ this genome-wide screening method for Borrelia burgdorferi, the Lyme disease spirochete, during an active murine infection. Utilization of this technique provides valuable insights into the B. burgdorferi transcriptome during infection, despite the low bacterial numbers in the mammalian host environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mahan MJ, Slauch JM, Hanna PC et al (1993) Selection for bacterial genes that are specifically induced in host tissues: the hunt for virulence factors. Infect Agents Dis 2(4):263–268

    CAS  PubMed  Google Scholar 

  2. Mahan MJ, Slauch JM, Mekalanos JJ (1993) Selection of bacterial virulence genes that are specifically induced in host tissues. Science 259(5095):686–688

    Article  CAS  PubMed  Google Scholar 

  3. Slauch JM, Camilli A (2000) IVET and RIVET: use of gene fusions to identify bacterial virulence factors specifically induced in host tissues. Methods Enzymol 326:73–96

    Article  CAS  PubMed  Google Scholar 

  4. Jackson RW, Giddens SR (2006) Development and application of in vivo expression technology (IVET) for analysing microbial gene expression in complex environments. Infect Disord Drug Targets 6(3):207–240

    Article  CAS  PubMed  Google Scholar 

  5. Hanin A, Sava I, Bao Y et al (2010) Screening of in vivo activated genes in Enterococcus faecalis during insect and mouse infections and growth in urine. PLoS One 5(7):e11879. doi:10.1371/journal.pone.0011879

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lee SW, Cooksey DA (2000) Genes expressed in Pseudomonas putida during colonization of a plant-pathogenic fungus. Appl Environ Microbiol 66(7):2764–2772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mendez J, Reimundo P, Perez-Pascual D et al (2011) A novel cdsAB operon is involved in the uptake of L-cysteine and participates in the pathogenesis of Yersinia ruckeri. J Bacteriol 193(4):944–951. doi:10.1128/JB.01058-10. JB.01058-10 [pii]

    Article  CAS  PubMed  Google Scholar 

  8. Ellis TC, Jain S, Linowski AK et al (2014) In Vivo expression technology identifies a novel virulence factor critical for Borrelia burgdorferi persistence in mice. Plos Pathog 10(6):e1004260. doi:10.1371/journal.ppat.1004260. ARTN e1004260

    Article  PubMed  Google Scholar 

  9. Adams PP, Flores Avile C, Popitsch N et al (2017) In vivo expression technology and 5′ end mapping of the Borrelia burgdorferi transcriptome identify novel RNAs expressed during mammalian infection. Nucleic Acids Res 45(2):775–792. doi:10.1093/nar/gkw1180

    Article  PubMed  Google Scholar 

  10. Radolf JD, Caimano MJ, Stevenson B et al (2012) Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat Rev Microbiol 10(2):87–99. doi:10.1038/nrmicro2714

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bestor A, Stewart PE, Jewett MW et al (2010) Use of the Cre-lox recombination system to investigate the lp54 gene requirement in the infectious cycle of Borrelia burgdorferi. Infect Immun 78(6):2397–2407. doi:10.1128/IAI.01059-09. IAI.01059-09 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jewett MW, Jain S, Linowski AK et al (2011) Molecular characterization of the Borrelia burgdorferi in vivo-essential protein PncA. Microbiology 157(Pt 10):2831–2840. doi:10.1099/mic.0.051706-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Purser JE, Lawrenz MB, Caimano MJ et al (2003) A plasmid-encoded nicotinamidase (PncA) is essential for infectivity of Borrelia burgdorferi in a mammalian host. Mol Microbiol 48(3):753–764

    Article  CAS  PubMed  Google Scholar 

  14. Ramamoorthy R, McClain NA, Gautam A et al (2005) Expression of the bmpB gene of Borrelia burgdorferi is modulated by two distinct transcription termination events. J Bacteriol 187(8):2592–2600. doi:10.1128/JB.187.8.2592-2600.2005 187/8/2592. [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rosa PA, Tilly K, Stewart PE (2005) The burgeoning molecular genetics of the Lyme disease spirochaete. Nat Rev Microbiol 3(2):129–143. doi:10.1038/nrmicro1086. nrmicro1086 [pii]

    Article  CAS  PubMed  Google Scholar 

  16. Rego RO, Bestor A, Rosa PA (2011) Defining the plasmid-borne restriction-modification systems of the Lyme disease spirochete Borrelia burgdorferi. J Bacteriol 193(5):1161–1171. doi:10.1128/JB.01176-10. JB.01176-10 [pii]

    Article  CAS  PubMed  Google Scholar 

  17. Casselli T, Bankhead T (2015) Use of in vivo expression Technology for the Identification of putative host adaptation factors of the Lyme disease spirochete. J Mol Microbiol Biotechnol 25(5):349–361. doi:10.1159/000439305

    Article  CAS  PubMed  Google Scholar 

  18. Barbour AG (1984) Isolation and cultivation of Lyme disease spirochetes. Yale J Biol Med 57(4):521–525

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Rosa PA, Hogan D (1992) Colony formation by Borrelia burgdorferi in solid medium: clonal analysis of osp locus variants. In: Munderloh UG, Kurtti TJ (eds) Proceeding of the first international conference on tick borne pathogens at the host-vector Interface. University of Minnesota, St. Paul, Minnesota, pp 95–103

    Google Scholar 

  20. Elias AF, Stewart PE, Grimm D et al (2002) Clonal polymorphism of Borrelia burgdorferi strain B31 MI: implications for mutagenesis in an infectious strain background. Infect Immun 70(4):2139–2150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grundemann D, Schomig E (1996) Protection of DNA during preparative agarose gel electrophoresis against damage induced by ultraviolet light. BioTechniques 21(5):898–903

    CAS  PubMed  Google Scholar 

  22. Samuels DS (1995) Electrotransformation of the spirochete Borrelia burgdorferi. In: Nickoloff JA (ed) Methods in molecular biology, Electroporation protocols for microorgansisms, vol 47. Humana Press, Inc., Totowa, N.J, pp 253–259

    Google Scholar 

  23. Rego RO, Bestor A, Stefka J et al (2014) Population bottlenecks during the infectious cycle of the Lyme disease spirochete Borrelia burgdorferi. PLoS One 9(6):e101009. doi:10.1371/journal.pone.0101009

    Article  PubMed  PubMed Central  Google Scholar 

  24. Troy EB, Lin T, Gao L et al (2013) Understanding barriers to Borrelia burgdorferi dissemination during infection using massively parallel sequencing. Infect Immun 81:2347–2357. doi:10.1128/IAI.00266-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

Thank you to Dr. Andrew Camilli, Dr. Patti Rosa and members of the Rosa lab for initial guidance on development of IVET for B. burgdorferi. Thank you to members of the Jewett lab for all of their hard work on this project. In particular, we recognize the invaluable contributions of Angelika Linowski and Dr. Sunny Jain. This work was supported by the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under award numbers K22AI081730 and R01AI099094 to M.W.J.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mollie W. Jewett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Adams, P.P., Jewett, M.W. (2018). Selection of Borrelia burgdorferi Promoter Sequences Active During Mammalian Infection Using In Vivo Expression Technology. In: Pal, U., Buyuktanir, O. (eds) Borrelia burgdorferi. Methods in Molecular Biology, vol 1690. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7383-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7383-5_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7382-8

  • Online ISBN: 978-1-4939-7383-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics