Skip to main content

Multiplexed ChIP-Seq Using Direct Nucleosome Barcoding: A Tool for High-Throughput Chromatin Analysis

  • Protocol
  • First Online:
Chromatin Immunoprecipitation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1689))

Abstract

Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) or microarray hybridization (ChIP-on-chip) are standard methods for the study of transcription factor binding sites and histone chemical modifications. However, these approaches only allow profiling of a single factor or protein modification at a time.

In this chapter, we present Bar-ChIP, a higher throughput version of ChIP-Seq that relies on the direct ligation of molecular barcodes to chromatin fragments. Bar-ChIP enables the concurrent profiling of multiple DNA–protein interactions and is therefore amenable to experimental scale-up, without the need for any robotic instrumentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chabbert CD, Adjalley SH, Klaus B et al (2015) A high-throughput ChIP-Seq for large-scale chromatin studies. Mol Syst Biol 11(1):777. doi:10.15252/msb.20145776

    Article  PubMed  PubMed Central  Google Scholar 

  2. Weiner A, Hsieh TH, Appleboim A et al (2015) High-resolution chromatin dynamics during a yeast stress response. Mol Cell 58(2):371–386. doi:10.1016/j.molcel.2015.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Consortium EP (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74. doi:10.1038/nature11247

    Article  Google Scholar 

  4. Garber M, Yosef N, Goren A et al (2012) A high-throughput chromatin immunoprecipitation approach reveals principles of dynamic gene regulation in mammals. Mol Cell 47(5):810–822. doi:10.1016/j.molcel.2012.07.030

    Article  CAS  PubMed  Google Scholar 

  5. Aldridge S, Watt S, Quail MA et al (2013) AHT-ChIP-seq: a completely automated robotic protocol for high-throughput chromatin immunoprecipitation. Genome Biol 14(11):R124. doi:10.1186/gb-2013-14-11-r124

    Article  PubMed  PubMed Central  Google Scholar 

  6. Lara-Astiaso D, Weiner A, Lorenzo-Vivas E et al (2014) Immunogenetics. Chromatin state dynamics during blood formation. Science 345(6199):943–949. doi:10.1126/science.1256271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. van Galen P, Viny AD, Ram O et al (2016) A multiplexed system for quantitative comparisons of chromatin landscapes. Mol Cell 61(1):170–180. doi:10.1016/j.molcel.2015.11.003

    Article  PubMed  Google Scholar 

  8. Weiner A, Lara-Astiaso D, Krupalnik V et al (2016) Co-ChIP enables genome-wide mapping of histone mark co-occurrence at single-molecule resolution. Nat Biotechnol 34(9):953–961. doi:10.1038/nbt.3652

    Article  CAS  PubMed  Google Scholar 

  9. Sadeh R, Launer-Wachs R, Wandel H et al (2016) Elucidating combinatorial chromatin states at single-nucleosome resolution. Mol Cell 63(6):1080–1088. doi:10.1016/j.molcel.2016.07.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359. doi:10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim D, Pertea G, Trapnell C et al (2013) TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14(4):R36. doi:10.1186/gb-2013-14-4-r36

    Article  PubMed  PubMed Central  Google Scholar 

  12. Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29(1):15–21. doi:10.1093/bioinformatics/bts635

    Article  CAS  PubMed  Google Scholar 

  13. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25(14):1754–1760. doi:10.1093/bioinformatics/btp324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079. doi:10.1093/bioinformatics/btp352

    Article  PubMed  PubMed Central  Google Scholar 

  15. Anders S, Pyl PT, Huber W (2015) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31(2):166–169. doi:10.1093/bioinformatics/btu638

    Article  CAS  PubMed  Google Scholar 

  16. Lawrence M, Huber W, Pages H et al (2013) Software for computing and annotating genomic ranges. PLoS Comput Biol 9(8):e1003118. doi:10.1371/journal.pcbi.1003118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Liu T (2014) Use model-based analysis of ChIP-Seq (MACS) to analyze short reads generated by sequencing protein-DNA interactions in embryonic stem cells. Methods Mol Biol 1150:81–95. doi:10.1007/978-1-4939-0512-6_4

    Article  CAS  PubMed  Google Scholar 

  18. Chabbert CD, Steinmetz LM, Klaus B (2016) DChIPRep, an R/bioconductor package for differential enrichment analysis in chromatin studies. PeerJ 4:e1981. doi:10.7717/peerj.1981

    Article  PubMed  PubMed Central  Google Scholar 

  19. Lun AT, Smyth GK (2016) csaw: a bioconductor package for differential binding analysis of ChIP-seq data using sliding windows. Nucleic Acids Res 44(5):e45. doi:10.1093/nar/gkv1191

    Article  PubMed  Google Scholar 

  20. Ross-Innes CS, Stark R, Teschendorff AE et al (2012) Differential oestrogen receptor binding is associated with clinical outcome in breast cancer. Nature 481(7381):389–393. doi:10.1038/nature10730

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Egelhofer TA, Minoda A, Klugman S et al (2011) An assessment of histone-modification antibody quality. Nat Struct Mol Biol 18(1):91–93. doi:10.1038/nsmb.1972

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The experimental part of this work was performed at EMBL and technically supported by the EMBL Genomics Core Facilities. C.D.C. was supported by a Ph.D. fellowship from the Boehringer Ingelheim Fonds. S.H.A. was supported by an EIPOD Marie Curie/COFUND postdoctoral fellowship. The experimental part of the study was supported by grants from the National Institutes of Health, Deutsche Forschungsgemeinschaft and European Research Council Advanced Investigator Grant (to L.M.S.). Research at VP laboratory is supported by a SciLifeLab Fellowship from the Science for Life Laboratory (SFO Karolinska Institutet), a Starting Grant from the Swedish Research Council (Vetenskapsrådet), a Swedish Foundation’s Starting Grant (Ragnar Söderberg Foundation), and a Wallenberg Academy Fellowship (Knut and Alice Wallenberg Foundation). Christophe D. Chabbert and Sophie H. Adjalley contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vicent Pelechano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Chabbert, C.D., Adjalley, S.H., Steinmetz, L.M., Pelechano, V. (2018). Multiplexed ChIP-Seq Using Direct Nucleosome Barcoding: A Tool for High-Throughput Chromatin Analysis. In: Visa, N., Jordán-Pla, A. (eds) Chromatin Immunoprecipitation. Methods in Molecular Biology, vol 1689. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7380-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7380-4_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7379-8

  • Online ISBN: 978-1-4939-7380-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics