Skip to main content

Sm-ChIPi: Single-Molecule Chromatin Immunoprecipitation Imaging

  • Protocol
  • First Online:
Chromatin Immunoprecipitation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1689))

Abstract

Epigenetic complexes regulate chromatin dynamics via binding to and assembling on chromatin. However, the mechanisms of chromatin binding and assembly of epigenetic complexes within cells remain incompletely understood, partly due to technical challenges. Here, we present a new approach termed single-molecule chromatin immunoprecipitation imaging (Sm-ChIPi) that enables to assess the cellular assembly stoichiometry of epigenetic complexes on chromatin. Sm-ChIPi was developed based on chromatin immunoprecipitation followed by single-molecule fluorescence microscopy imaging. In this method, an epigenetic complex subunit fused with a gene coding for a fluorescent protein is stably expressed in its corresponding knockout cells. Nucleosomes associated with epigenetic complexes are isolated from cells at native conditions and incubated with biotinylated antibodies. The resulting complexes are immobilized on a quartz slide that had been passivated and functionalized with NeutrAvidin. Image stacks are then acquired by using single-molecule TIRF microscopy. The individual spots imaged by TIRF microscopy represent single protein–nucleosome complexes. The number of copies of the protein complexes on a nucleosome is inferred from the fluorescence photobleaching measurements. Sm-ChIPi is a sensitive and direct method that can quantify the cellular assembly stoichiometry of epigenetic complexes on chromatin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Luger K, Dechassa ML, Tremethick DJ (2012) New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat Rev Mol Cell Biol 13:436–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  CAS  PubMed  Google Scholar 

  3. Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128:707–719

    Article  CAS  PubMed  Google Scholar 

  4. Kerppola TK (2009) Polycomb group complexes—many combinations, many functions. Trends Cell Biol 19:692–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Simon JA, Kingston RE (2013) Occupying chromatin: polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. Mol Cell 49:808–824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Di Croce L, Helin K (2013) Transcriptional regulation by polycomb group proteins. Nat Struct Mol Biol 20:1147–1155

    Article  PubMed  Google Scholar 

  7. Aranda S, Mas G, Di Croce L (2015) Regulation of gene transcription by polycomb proteins. Sci Adv 1:e1500737

    Article  PubMed  PubMed Central  Google Scholar 

  8. Blackledge NP, Rose NR, Klose RJ (2015) Targeting polycomb systems to regulate gene expression: modifications to a complex story. Nat Rev Mol Cell Biol 16:643–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kondo T, Ito S, Koseki H (2016) Polycomb in transcriptional phase transition of developmental genes. Trends Biochem Sci 41:9–19

    Article  CAS  PubMed  Google Scholar 

  10. Margueron R, Reinberg D (2011) The polycomb complex PRC2 and its mark in life. Nature 469:343–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Steffen PA, Ringrose L (2014) What are memories made of? How polycomb and trithorax proteins mediate epigenetic memory. Nat Rev Mol Cell Biol 15:340–356

    Article  CAS  PubMed  Google Scholar 

  12. Schwartz YB, Pirrotta V (2013) A new world of polycombs: unexpected partnerships and emerging functions. Nat Rev Genet 14:853–864

    Article  CAS  PubMed  Google Scholar 

  13. Ren X, Vincenz C, Kerppola TK (2008) Changes in the distributions and dynamics of polycomb repressive complexes during embryonic stem cell differentiation. Mol Cell Biol 28:2884–2895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ren X, Kerppola TK (2011) REST interacts with Cbx proteins and regulates polycomb repressive complex 1 occupancy at RE1 elements. Mol Cell Biol 31:2100–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cheng B, Ren X, Kerppola TK (2014) KAP1 represses differentiation-inducible genes in embryonic stem cells through cooperative binding with PRC1 and derepresses pluripotency-associated genes. Mol Cell Biol 34:2075–2091

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhen CY, Duc HN, Kokotovic M, Phiel CJ, Ren X (2014) Cbx2 stably associates with mitotic chromosomes via a PRC2- or PRC1-independent mechanism and is needed for recruiting PRC1 complex to mitotic chromosomes. Mol Biol Cell 25:3726–3739

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tatavosian R, Zhen CY, Duc HN, Balas MM, Johnson AM, Ren X (2015) Distinct cellular assembly stoichiometry of polycomb complexes on chromatin revealed by single-molecule chromatin immunoprecipitation imaging. J Biol Chem 290:28038–28054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhen CY, Tatavosian R, Huynh TN, Duc HN, Das R, Kokotovic M, Grimm JB, Lavis LD, Lee J, Mejia FJ, Li Y, Yao T, Ren X (2016) Live-cell single-molecule tracking reveals co-recognition of H3K27me3 and DNA targets polycomb Cbx7-PRC1 to chromatin. Elife 5. doi:10.7554/eLife.17667

  19. Voigt P, LeRoy G, Drury WJ 3rd, Zee BM, Son J, Beck DB, Young NL, Garcia BA, Reinberg D (2012) Asymmetrically modified nucleosomes. Cell 151:181–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sadeh R, Launer-Wachs R, Wandel H, Rahat A, Friedman N (2016) Elucidating combinatorial chromatin states at single-nucleosome resolution. Mol Cell 63:1080–1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jain A, Liu R, Ramani B, Arauz E, Ishitsuka Y, Ragunathan K, Park J, Chen J, Xiang YK, Ha T (2011) Probing cellular protein complexes using single-molecule pull-down. Nature 473:484–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ulbrich MH, Isacoff EY (2007) Subunit counting in membrane-bound proteins. Nat Methods 4:319–321

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Ren X, Li H, Clarke RW, Alves DA, Ying L, Klenerman D, Balasubramanian S (2006) Analysis of human telomerase activity and function by two color single molecule coincidence fluorescence spectroscopy. J Am Chem Soc 128:4992–5000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ren X, Gavory G, Li H, Ying L, Klenerman D, Balasubramanian S (2003) Identification of a new RNA.RNA interaction site for human telomerase RNA (hTR): structural implications for hTR accumulation and a dyskeratosis congenita point mutation. Nucleic Acids Res 31:6509–6515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tatavosian R, Zhen CY, Ren XJ (2015) Single-molecule fluorescence microscopy methods in chromatin biology. ACS Symp Ser 1215:129–136

    Article  CAS  Google Scholar 

  26. Aggarwal V, Ha T (2016) Single-molecule fluorescence microscopy of native macromolecular complexes. Curr Opin Struct Biol 41:225–232

    Article  CAS  PubMed  Google Scholar 

  27. Murphy PJ, Cipriany BR, Wallin CB, Ju CY, Szeto K, Hagarman JA, Benitez JJ, Craighead HG, Soloway PD (2013) Single-molecule analysis of combinatorial epigenomic states in normal and tumor cells. Proc Natl Acad Sci U S A 110:7772–7777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shema E, Jones D, Shoresh N, Donohue L, Ram O, Bernstein BE (2016) Single-molecule decoding of combinatorially modified nucleosomes. Science 352:717–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jain A, Liu R, Xiang YK, Ha T (2012) Single-molecule pull-down for studying protein interactions. Nat Protoc 7:445–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chung SH, Kennedy RA (1991) Forward-backward non-linear filtering technique for extracting small biological signals from noise. J Neurosci Methods 40:71–86

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Cancer Institute of the National Institutes of Health under Award Number R03CA191443 (to X.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Ren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Tatavosian, R., Ren, X. (2018). Sm-ChIPi: Single-Molecule Chromatin Immunoprecipitation Imaging. In: Visa, N., Jordán-Pla, A. (eds) Chromatin Immunoprecipitation. Methods in Molecular Biology, vol 1689. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7380-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7380-4_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7379-8

  • Online ISBN: 978-1-4939-7380-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics