Exon Skipping Therapy Using Phosphorodiamidate Morpholino Oligomers in the mdx52 Mouse Model of Duchenne Muscular Dystrophy

  • Shouta Miyatake
  • Yoshitaka Mizobe
  • Hotake Takizawa
  • Yuko Hara
  • Toshifumi Yokota
  • Shin’ichi Takeda
  • Yoshitsugu Aoki
Part of the Methods in Molecular Biology book series (MIMB, volume 1687)


Exon skipping therapy using synthetic DNA-like molecules called antisense oligonucleotides (ASOs) is a promising therapeutic candidate for overcoming the dystrophin mutation that causes Duchenne muscular dystrophy (DMD). This treatment involves splicing out the frame-disrupting segment of the dystrophin mRNA, which restores the reading frame and produces a truncated yet functional dystrophin protein. Phosphorodiamidate morpholino oligomer (PMO) is the safest ASO for patients among ASOs and has recently been approved under the accelerated approval pathway by the U.S. Food and Drug Administration (FDA) as the first drug for DMD. Here, we describe the methodology and protocol of PMO transfection and evaluation of the exon skipping efficacy in the mdx52 mouse, an exon 52 deletion model of DMD produced by gene targeting. The mdx52 mouse model offers advantages over the mdx mouse, a spontaneous DMD model with a nonsense mutation in exon 23, in terms of the deletion in a hotspot of deletion mutations in DMD patients, the analysis of caveolae and also Dp140 and Dp260, shorter dystrophin isoforms.

Key words

Phosphorodiamidate morpholino oligomer (PMO) mdx mdx52 Duchenne/becker muscular dystrophies (DMD/BMD) Exon skipping Dystrophin 



This work was supported by the Japan Society for the Promotion of Science Grant-in-Aid for Research Activity Start-up (grant to Y.A., number 15H06883) and the Japan Agency for Medical Research and Development (AMED) (16ek0109154h0002 and 16am0301021h0002). We thank Dr. Rika Maruyama for scientific advice and Dr. Motoya Katsuki for the production of mdx52 mice.


  1. 1.
    Shimizu-Motohashi Y, Miyatake S, Komaki H, Takeda S, Aoki Y (2016) Recent advances in innovative therapeutic approaches for Duchenne muscular dystrophy: from discovery to clinical trials. Am J Transl Res 8(6):2471–2489PubMedPubMedCentralGoogle Scholar
  2. 2.
    Aoki Y, Nakamura A, Yokota T, Saito T, Okazawa H, Nagata T, Takeda S (2010) In-frame dystrophin following exon 51-skipping improves muscle pathology and function in the exon 52-deficient mdx mouse. Mol Ther 18(11):1995–2005. doi: 10.1038/mt.2010.186 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Aoki Y, Yokota T, Nagata T, Nakamura A, Tanihata J, Saito T, Duguez SM, Nagaraju K, Hoffman EP, Partridge T, Takeda S (2012) Bodywide skipping of exons 45-55 in dystrophic mdx52 mice by systemic antisense delivery. Proc Natl Acad Sci U S A 109(34):13763–13768. doi: 10.1073/pnas.1204638109 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kole R, Krainer AR, Altman S (2012) RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 11(2):125–140. doi: 10.1038/nrd3625 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Arora V, Devi GR, Iversen PL (2004) Neutrally charged phosphorodiamidate morpholino antisense oligomers: uptake, efficacy and pharmacokinetics. Curr Pharm Biotechnol 5(5):431–439CrossRefPubMedGoogle Scholar
  6. 6.
    Lu QL, Rabinowitz A, Chen YC, Yokota T, Yin H, Alter J, Jadoon A, Bou-Gharios G, Partridge T (2005) Systemic delivery of antisense oligoribonucleotide restores dystrophin expression in body-wide skeletal muscles. Proc Natl Acad Sci U S A 102(1):198–203. doi: 10.1073/pnas.0406700102 CrossRefPubMedGoogle Scholar
  7. 7.
    Yokota T, Lu QL, Partridge T, Kobayashi M, Nakamura A, Takeda S, Hoffman E (2009) Efficacy of systemic morpholino exon-skipping in Duchenne dystrophy dogs. Ann Neurol 65(6):667–676. doi: 10.1002/ana.21627 CrossRefPubMedGoogle Scholar
  8. 8.
    Guncay A, Yokota T (2015) Antisense oligonucleotide drugs for Duchenne muscular dystrophy: how far have we come and what does the future hold? Future Med Chem 7(13):1631–1635. doi: 10.4155/fmc.15.116 CrossRefPubMedGoogle Scholar
  9. 9.
    Touznik A, Lee JJ, Yokota T (2014) New developments in exon skipping and splice modulation therapies for neuromuscular diseases. Expert Opin Biol Ther 14(6):809–819. doi: 10.1517/14712598.2014.896335 CrossRefPubMedGoogle Scholar
  10. 10.
    Dowling JJ (2016) Eteplirsen therapy for Duchenne muscular dystrophy: skipping to the front of the line. Nat Rev Neurol 12(12):675–676. doi: 10.1038/nrneurol.2016.180 CrossRefPubMedGoogle Scholar
  11. 11.
    Sicinski P, Geng Y, Ryder-Cook AS, Barnard EA, Darlison MG, Barnard PJ (1989) The molecular basis of muscular dystrophy in the mdx mouse: a point mutation. Science (New York, NY) 244(4912):1578–1580CrossRefGoogle Scholar
  12. 12.
    Aartsma-Rus A, Van Deutekom JC, Fokkema IF, Van Ommen GJ, Den Dunnen JT (2006) Entries in the Leiden Duchenne muscular dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule. Muscle Nerve 34(2):135–144. doi: 10.1002/mus.20586 CrossRefPubMedGoogle Scholar
  13. 13.
    Aartsma-Rus A, Fokkema I, Verschuuren J, Ginjaar I, van Deutekom J, van Ommen GJ, den Dunnen JT (2009) Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat 30(3):293–299. doi: 10.1002/humu.20918 CrossRefPubMedGoogle Scholar
  14. 14.
    Esposito G, Schiattarella GG, Perrino C, Cattaneo F, Pironti G, Franzone A, Gargiulo G, Magliulo F, Serino F, Carotenuto G, Sannino A, Ilardi F, Scudiero F, Brevetti L, Oliveti M, Giugliano G, Del Giudice C, Ciccarelli M, Renzone G, Scaloni A, Zambrano N, Trimarco B (2015) Dermcidin: a skeletal muscle myokine modulating cardiomyocyte survival and infarct size after coronary artery ligation. Cardiovasc Res. doi: 10.1093/cvr/cvv173
  15. 15.
    Araki E, Nakamura K, Nakao K, Kameya S, Kobayashi O, Nonaka I, Kobayashi T, Katsuki M (1997) Targeted disruption of exon 52 in the mouse dystrophin gene induced muscle degeneration similar to that observed in Duchenne muscular dystrophy. Biochem Biophys Res Commun 238(2):492–497. doi: 10.1006/bbrc.1997.7328 CrossRefPubMedGoogle Scholar
  16. 16.
    Aoki Y, Nagata T, Yokota T, Nakamura A, Wood MJ, Partridge T, Takeda S (2013) Highly efficient in vivo delivery of PMO into regenerating myotubes and rescue in laminin-alpha2 chain-null congenital muscular dystrophy mice. Hum Mol Genet 22(24):4914–4928. doi: 10.1093/hmg/ddt341 CrossRefPubMedGoogle Scholar
  17. 17.
    Kameya S, Araki E, Katsuki M, Mizota A, Adachi E, Nakahara K, Nonaka I, Sakuragi S, Takeda S, Nabeshima Y (1997) Dp260 disrupted mice revealed prolonged implicit time of the b-wave in ERG and loss of accumulation of beta-dystroglycan in the outer plexiform layer of the retina. Hum Mol Genet 6(13):2195–2203CrossRefPubMedGoogle Scholar
  18. 18.
    Prior TW, Bartolo C, Pearl DK, Papp AC, Snyder PJ, Sedra MS, Burghes AH, Mendell JR (1995) Spectrum of small mutations in the dystrophin coding region. Am J Hum Genet 57(1):22–33CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Helderman-van den Enden AT, Straathof CS, Aartsma-Rus A, den Dunnen JT, Verbist BM, Bakker E, Verschuuren JJ, Ginjaar HB (2010) Becker muscular dystrophy patients with deletions around exon 51; a promising outlook for exon skipping therapy in Duchenne patients. Neuromuscul Disord 20(4):251–254. doi: 10.1016/j.nmd.2010.01.013 CrossRefPubMedGoogle Scholar
  20. 20.
    van Deutekom JC, Janson AA, Ginjaar IB, Frankhuizen WS, Aartsma-Rus A, Bremmer-Bout M, den Dunnen JT, Koop K, van der Kooi AJ, Goemans NM, de Kimpe SJ, Ekhart PF, Venneker EH, Platenburg GJ, Verschuuren JJ, van Ommen GJ (2007) Local dystrophin restoration with antisense oligonucleotide PRO051. N Engl J Med 357(26):2677–2686. doi: 10.1056/NEJMoa073108 CrossRefPubMedGoogle Scholar
  21. 21.
    Kinali M, Arechavala-Gomeza V, Feng L, Cirak S, Hunt D, Adkin C, Guglieri M, Ashton E, Abbs S, Nihoyannopoulos P, Garralda ME, Rutherford M, McCulley C, Popplewell L, Graham IR, Dickson G, Wood MJ, Wells DJ, Wilton SD, Kole R, Straub V, Bushby K, Sewry C, Morgan JE, Muntoni F (2009) Local restoration of dystrophin expression with the morpholino oligomer AVI-4658 in Duchenne muscular dystrophy: a single-blind, placebo-controlled, dose-escalation, proof-of-concept study. Lancet Neurol 8(10):918–928. doi: 10.1016/s1474-4422(09)70211-x CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Nakamura A, Shiba N, Miyazaki D, Nishizawa H, Inaba Y, Fueki N, Maruyama R, Echigoya Y, Yokota T (2017) Comparison of the phenotypes of patients harboring in-frame deletions starting at exon 45 in the Duchenne muscular dystrophy gene indicates potential for the development of exon skipping therapy. J Hum Genet 62(4):459–463. doi: 10.1038/jhg.2016.152 CrossRefPubMedGoogle Scholar
  23. 23.
    Shibuya S, Wakayama Y, Murahashi M, Kojima H, Oniki H, Matsuzaki T, Nonaka I (2001) Muscle plasma membrane changes in dystrophin gene exon 52 knockout mouse. Pathol Res Pract 197(6):441–447. doi: 10.1078/0344-0338-00058 CrossRefPubMedGoogle Scholar
  24. 24.
    Hagiwara Y, Fujita M, Imamura M, Noguchi S, Sasaoka T (2006) Caveolin-3 deficiency decreases the gene expression level of osteopontin in mdx mouse skeletal muscle. Acta Myol 25(2):53–61PubMedGoogle Scholar
  25. 25.
    Lehto T, Castillo Alvarez A, Gauck S, Gait MJ, Coursindel T, Wood MJ, Lebleu B, Boisguerin P (2014) Cellular trafficking determines the exon skipping activity of Pip6a-PMO in mdx skeletal and cardiac muscle cells. Nucleic Acids Res 42(5):3207–3217. doi: 10.1093/nar/gkt1220 CrossRefPubMedGoogle Scholar
  26. 26.
    Gervasio OL, Whitehead NP, Yeung EW, Phillips WD, Allen DG (2008) TRPC1 binds to caveolin-3 and is regulated by Src kinase - role in Duchenne muscular dystrophy. J Cell Sci 121(Pt 13):2246–2255. doi: 10.1242/jcs.032003 CrossRefPubMedGoogle Scholar
  27. 27.
    Echigoya Y, Lee J, Rodrigues M, Nagata T, Tanihata J, Nozohourmehrabad A, Panesar D, Miskew B, Aoki Y, Yokota T (2013) Mutation types and aging differently affect revertant fiber expansion in dystrophic mdx and mdx52 mice. PLoS One 8(7):e69194. doi: 10.1371/journal.pone.0069194 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    t Hoen PA, de Meijer EJ, Boer JM, Vossen RH, Turk R, Maatman RG, Davies KE, van Ommen GJ, van Deutekom JC, den Dunnen JT (2008) Generation and characterization of transgenic mice with the full-length human DMD gene. J Biol Chem 283(9):5899–5907. doi: 10.1074/jbc.M709410200 CrossRefGoogle Scholar
  29. 29.
    Kudoh H, Ikeda H, Kakitani M, Ueda A, Hayasaka M, Tomizuka K, Hanaoka K (2005) A new model mouse for Duchenne muscular dystrophy produced by 2.4 Mb deletion of dystrophin gene using Cre-loxP recombination system. Biochem Biophys Res Commun 328(2):507–516. doi: 10.1016/j.bbrc.2004.12.191 CrossRefPubMedGoogle Scholar
  30. 30.
    Aartsma-Rus A, Krieg AM (2017) FDA approves Eteplirsen for Duchenne muscular dystrophy: the next chapter in the Eteplirsen saga. Nucleic Acid Ther 27(1):1–3. doi: 10.1089/nat.2016.0657 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    (2016) Railroading at the FDA. Nat Biotechnol 34(11):1078. doi: 10.1038/nbt.3733

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Shouta Miyatake
    • 1
  • Yoshitaka Mizobe
    • 1
  • Hotake Takizawa
    • 1
  • Yuko Hara
    • 1
  • Toshifumi Yokota
    • 2
  • Shin’ichi Takeda
    • 1
  • Yoshitsugu Aoki
    • 1
  1. 1.Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
  2. 2.Department of Medical GeneticsUniversity of Alberta Faculty of Medicine and DentistryEdmontonCanada

Personalised recommendations