Probing the Pathogenesis of Duchenne Muscular Dystrophy Using Mouse Models

Part of the Methods in Molecular Biology book series (MIMB, volume 1687)


Investigations using mouse models have provided seminal insights into the pathogenesis of Duchenne muscular dystrophy and the development of novel therapeutics. Several important methods have been considered standard-in-the-field for analyses of skeletal muscle weakness, strength, endurance, and histopathology, as well as responses to therapeutics such as glucocorticoids, disease modifying drugs which are part of the current standard of care for patients with this disease. Here we describe optimized genetic, genomic, and physiologic assays to probe dystrophic pathobiology in the mdx mouse and related strains.

Key words

mdx Duchenne Muscular dystrophy Exercise Glucocorticoids Skeletal muscle 



This work was supported by NIH grants R01-DK093821 (SMH), R01-HL127240 (SMH), T32-HL105338 (AM-N) and an Individual Biomedical Research Award from The Hartwell Foundation (SMH).


  1. 1.
    Hoffman EP, Brown RH Jr, Kunkel LM (1987) Dystrophin: the protein product of the Duchenne muscular dystrophy locus. Cell 51(6):919–928CrossRefPubMedGoogle Scholar
  2. 2.
    Crunkhorn S (2015) Muscular dystrophy: new exon-skipping strategy rescues dystrophin. Nat Rev Drug Discov 14(4):236. doi: 10.1038/nrd4587 CrossRefPubMedGoogle Scholar
  3. 3.
    Long C, Amoasii L, Mireault AA, McAnally JR, Li H, Sanchez-Ortiz E, Bhattacharyya S, Shelton JM, Bassel-Duby R, Olson EN (2016) Postnatal genome editing partially restores dystrophin expression in a mouse model of muscular dystrophy. Science 351(6271):400–403. doi: 10.1126/science.aad5725 CrossRefPubMedGoogle Scholar
  4. 4.
    Angelini C (2007) The role of corticosteroids in muscular dystrophy: a critical appraisal. Muscle Nerve 36(4):424–435. doi: 10.1002/mus.20812 CrossRefPubMedGoogle Scholar
  5. 5.
    Spurney CF, Gordish-Dressman H, Guerron AD, Sali A, Pandey GS, Rawat R, Van Der Meulen JH, Cha HJ, Pistilli EE, Partridge TA, Hoffman EP, Nagaraju K (2009) Preclinical drug trials in the mdx mouse: assessment of reliable and sensitive outcome measures. Muscle Nerve 39(5):591–602. doi: 10.1002/mus.21211 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bulfield G, Siller WG, Wight PA, Moore KJ (1984) X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci U S A 81(4):1189–1192CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    McGreevy JW, Hakim CH, McIntosh MA, Duan D (2015) Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy. Dis Model Mech 8(3):195–213. doi: 10.1242/dmm.018424 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Sacco A, Mourkioti F, Tran R, Choi J, Llewellyn M, Kraft P, Shkreli M, Delp S, Pomerantz JH, Artandi SE, Blau HM (2010) Short telomeres and stem cell exhaustion model Duchenne muscular dystrophy in mdx/mTR mice. Cell 143(7):1059–1071. doi: 10.1016/j.cell.2010.11.039 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Connolly AM, Keeling RM, Mehta S, Pestronk A, Sanes JR (2001) Three mouse models of muscular dystrophy: the natural history of strength and fatigue in dystrophin-, dystrophin/utrophin-, and laminin alpha2-deficient mice. Neuromuscular Disord 11(8):703–712CrossRefGoogle Scholar
  10. 10.
    Morrison-Nozik A, Anand P, Zhu H, Duan Q, Sabeh M, Prosdocimo DA, Lemieux ME, Nordsborg N, Russell AP, MacRae CA, Gerber AN, Jain MK, Haldar SM (2015) Glucocorticoids enhance muscle endurance and ameliorate Duchenne muscular dystrophy through a defined metabolic program. Proc Natl Acad Sci U S A 112(49):E6780–E6789. doi: 10.1073/pnas.1512968112 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Grady RM, Teng H, Nichol MC, Cunningham JC, Wilkinson RS, Sanes JR (1997) Skeletal and cardiac myopathies in mice lacking utrophin and dystrophin: a model for Duchenne muscular dystrophy. Cell 90(4):729–738CrossRefPubMedGoogle Scholar
  12. 12.
    Deconinck AE, Rafael JA, Skinner JA, Brown SC, Potter AC, Metzinger L, Watt DJ, Dickson JG, Tinsley JM, Davies KE (1997) Utrophin-dystrophin-deficient mice as a model for Duchenne muscular dystrophy. Cell 90(4):717–727CrossRefPubMedGoogle Scholar
  13. 13.
    Cooper BJ, Winand NJ, Stedman H, Valentine BA, Hoffman EP, Kunkel LM, Scott MO, Fischbeck KH, Kornegay JN, Avery RJ et al (1988) The homologue of the Duchenne locus is defective in X-linked muscular dystrophy of dogs. Nature 334(6178):154–156. doi: 10.1038/334154a0 CrossRefPubMedGoogle Scholar
  14. 14.
    Kornegay JN, Tuler SM, Miller DM, Levesque DC (1988) Muscular dystrophy in a litter of golden retriever dogs. Muscle Nerve 11(10):1056–1064. doi: 10.1002/mus.880111008 CrossRefPubMedGoogle Scholar
  15. 15.
    Vieira NM, Elvers I, Alexander MS, Moreira YB, Eran A, Gomes JP, Marshall JL, Karlsson EK, Verjovski-Almeida S, Lindblad-Toh K, Kunkel LM, Zatz M (2015) Jagged 1 rescues the Duchenne muscular dystrophy phenotype. Cell 163(5):1204–1213. doi: 10.1016/j.cell.2015.10.049 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kawahara G, Karpf JA, Myers JA, Alexander MS, Guyon JR, Kunkel LM (2011) Drug screening in a zebrafish model of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 108(13):5331–5336. doi: 10.1073/pnas.1102116108 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Haldar SM, Jeyaraj D, Anand P, Zhu H, Lu Y, Prosdocimo DA, Eapen B, Kawanami D, Okutsu M, Brotto L, Fujioka H, Kerner J, Rosca MG, McGuinness OP, Snow RJ, Russell AP, Gerber AN, Bai X, Yan Z, Nosek TM, Brotto M, Hoppel CL, Jain MK (2012) Kruppel-like factor 15 regulates skeletal muscle lipid flux and exercise adaptation. Proc Natl Acad Sci U S A 109(17):6739–6744. doi: 10.1073/pnas.1121060109 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Shin JH, Hakim CH, Zhang K, Duan D (2011) Genotyping mdx, mdx3cv, and mdx4cv mice by primer competition polymerase chain reaction. Muscle Nerve 43(2):283–286. doi: 10.1002/mus.21873 CrossRefPubMedGoogle Scholar
  19. 19.
    Fairclough RJ, Bareja A, Davies KE (2011) Progress in therapy for Duchenne muscular dystrophy. Exp Physiol 96(11):1101–1113. doi: 10.1113/expphysiol.2010.053025 CrossRefPubMedGoogle Scholar
  20. 20.
    Keeling RM, Golumbek PT, Streif EM, Connolly AM (2007) Weekly oral prednisolone improves survival and strength in male mdx mice. Muscle Nerve 35(1):43–48. doi: 10.1002/mus.20646 CrossRefPubMedGoogle Scholar
  21. 21.
    Golumbek PT, Keeling RM, Connolly AM (2007) Strength and corticosteroid responsiveness of mdx mice is unchanged by RAG2 gene knockout. Neuromuscul Disord 17(5):376–384. doi: 10.1016/j.nmd.2007.02.005 CrossRefPubMedGoogle Scholar
  22. 22.
    Wang YX, Zhang CL, Yu RT, Cho HK, Nelson MC, Bayuga-Ocampo CR, Ham J, Kang H, Evans RM (2004) Regulation of muscle fiber type and running endurance by PPARdelta. PLoS Biol 2(10):e294. doi: 10.1371/journal.pbio.0020294 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hamer PW, McGeachie JM, Davies MJ, Grounds MD (2002) Evans blue dye as an in vivo marker of myofibre damage: optimising parameters for detecting initial myofibre membrane permeability. J Anat 200(Pt 1):69–79CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Handschin C, Kobayashi YM, Chin S, Seale P, Campbell KP, Spiegelman BM (2007) PGC-1alpha regulates the neuromuscular junction program and ameliorates Duchenne muscular dystrophy. Genes Dev 21(7):770–783. doi: 10.1101/gad.1525107 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Chan MC, Rowe GC, Raghuram S, Patten IS, Farrell C, Arany Z (2014) Post-natal induction of PGC-1alpha protects against severe muscle dystrophy independently of utrophin. Skelet Muscle 4(1):2. doi: 10.1186/2044-5040-4-2 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Heydemann A, Ceco E, Lim JE, Hadhazy M, Ryder P, Moran JL, Beier DR, Palmer AA, McNally EM (2009) Latent TGF-beta-binding protein 4 modifies muscular dystrophy in mice. J Clin Invest 119(12):3703–3712. doi: 10.1172/JCI39845 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10(1):57–63. doi: 10.1038/nrg2484 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4(2):249–264. doi: 10.1093/biostatistics/4.2.249 CrossRefPubMedGoogle Scholar
  29. 29.
    Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JY, Zhang J (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5(10):R80. doi: 10.1186/gb-2004-5-10-r80 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Smyth GK (2004) Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:3. doi: 10.2202/1544-6115.1027 CrossRefGoogle Scholar
  31. 31.
    Chen YW, Zhao P, Borup R, Hoffman EP (2000) Expression profiling in the muscular dystrophies: identification of novel aspects of molecular pathophysiology. J Cell Biol 151(6):1321–1336CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kainulainen H, Papaioannou KG, Silvennoinen M, Autio R, Saarela J, Oliveira BM, Nyqvist M, Pasternack A, t Hoen PA, Kujala UM, Ritvos O, Hulmi JJ (2015) Myostatin/activin blocking combined with exercise reconditions skeletal muscle expression profile of mdx mice. Mol Cell Endocrinol 399:131–142. doi: 10.1016/j.mce.2014.10.001 CrossRefPubMedGoogle Scholar
  33. 33.
    Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. doi: 10.1038/nprot.2008.211 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Alexander Morrison-Nozik
    • 1
  • Saptarsi M. Haldar
    • 2
    • 3
  1. 1.Ohio University Heritage College of Osteopathic Medicine at Cleveland ClinicClevelandUSA
  2. 2.Gladstone InstitutesSan FranciscoUSA
  3. 3.Department of MedicineUniversity of California San FranciscoSan FranciscoUSA

Personalised recommendations