Advertisement

Proteomic Profiling of the Dystrophin-Deficient Brain

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1687)

Abstract

Duchenne muscular dystrophy is a highly progressive neuromuscular disorder caused by primary abnormalities in the Dmd gene encoding the membrane cytoskeletal protein dystrophin. Dystrophinopathies are multi-systems disorders that are characterized by severe skeletal muscle wasting, with loss of independent ambulation in the early teenage years, followed by cardio-respiratory complications and premature death. Nonprogressive cognitive impairments are estimated to affect approximately one-third of dystrophic children. To identify the molecular mechanisms behind the impaired brain function in dystrophinopathy, liquid chromatography-based mass spectrometry offers an unbiased and technology-driven approach. In this chapter, we give a detailed description of a label-free mass spectrometric method to investigate proteome-wide changes in the dystrophin-deficient brain from a genetic mouse model of Duchenne muscular dystrophy.

Key words

Cognitive impairment Duchenne muscular dystrophy Dystrophinopathy Mass spectrometry Neuroproteomics 

References

  1. 1.
    Koenig M, Hoffman EP, Bertelson CJ, Monaco AP, Feener C, Kunkel LM (1987) Complete cloning of the Duchenne muscular dystrophy (DMD) cDNA and preliminary genomic organization of the DMD gene in normal and affected individuals. Cell 50:509–517CrossRefPubMedGoogle Scholar
  2. 2.
    Koenig M, Monaco AP, Kunkel LM (1988) The complete sequence of dystrophin predicts a rod-shaped cytoskeletal protein. Cell 53:219–228CrossRefPubMedGoogle Scholar
  3. 3.
    Zubrzycka-Gaarn EE, Bulman DE, Karpati G, Burghes AH, Belfall B, Klamut HJ, Talbot J, Hodges RS, Ray PN, Worton RG (1988) The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle. Nature 333:466–469CrossRefPubMedGoogle Scholar
  4. 4.
    Murphy S, Ohlendieck K (2015) The biochemical and mass spectrometric profiling of the dystrophin complexome from skeletal muscle. Comput Struct Biotechnol J 14:20–27CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ervasti JM, Ohlendieck K, Kahl SD, Gaver MG, Campbell KP (1990) Deficiency of a glycoprotein component of the dystrophin complex in dystrophic muscle. Nature 345:315–319CrossRefPubMedGoogle Scholar
  6. 6.
    Allen DG, Whitehead NP, Froehner SC (2016) Absence of dystrophin disrupts skeletal muscle signaling: roles of Ca2+, reactive oxygen species, and nitric oxide in the development of muscular dystrophy. Physiol Rev 96:253–305CrossRefPubMedGoogle Scholar
  7. 7.
    Deconinck N, Dan B (2007) Pathophysiology of duchenne muscular dystrophy: current hypotheses. Pediatr Neurol 36:1–7CrossRefPubMedGoogle Scholar
  8. 8.
    Shin J, Tajrishi MM, Ogura Y, Kumar A (2013) Wasting mechanisms in muscular dystrophy. Int J Biochem Cell Biol 45:2266–2279CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Holland A, Murphy S, Dowling P, Ohlendieck K (2016) Pathoproteomic profiling of the skeletal muscle matrisome in dystrophinopathy associated myofibrosis. Proteomics 16:345–366CrossRefPubMedGoogle Scholar
  10. 10.
    Muntoni F, Torelli S, Ferlini A (2003) Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol 2:731–740CrossRefPubMedGoogle Scholar
  11. 11.
    Perronnet C, Vaillend C (2010) Dystrophins, utrophins, and associated scaffolding complexes: role in mammalian brain and implications for therapeutic strategies. J Biomed Biotechnol 2010:849426PubMedPubMedCentralGoogle Scholar
  12. 12.
    Culligan K, Ohlendieck K (2002) Diversity of the brain dystrophin-glycoprotein complex. J Biomed Biotechnol 2:31–36CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Snow WM, Fry M, Anderson JE (2013) Increased density of dystrophin protein in the lateral versus the vermal mouse cerebellum. Cell Mol Neurobiol 33:513–520CrossRefPubMedGoogle Scholar
  14. 14.
    Lidov HG, Selig S, Kunkel LM (1995) Dp140: a novel 140 kDa CNS transcript from the dystrophin locus. Hum Mol Genet 4:329–335CrossRefPubMedGoogle Scholar
  15. 15.
    Culligan K, Glover L, Dowling P, Ohlendieck K (2001) Brain dystrophin-glycoprotein complex: persistent expression of beta-dystroglycan, impaired oligomerization of Dp71 and up-regulation of utrophins in animal models of muscular dystrophy. BMC Cell Biol 2:2CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Doran P, Martin G, Dowling P, Jockusch H, Ohlendieck K (2006) Proteome analysis of the dystrophin-deficient MDX diaphragm reveals a drastic increase in the heat shock protein cvHSP. Proteomics 6:4610–4621CrossRefPubMedGoogle Scholar
  17. 17.
    Guevel L, Lavoie JR, Perez-Iratxeta C, Rouger K, Dubreil L, Feron M, Talon S, Brand M, Megeney LA (2011) Quantitative proteomic analysis of dystrophic dog muscle. J Proteome Res 10:2465–7248CrossRefPubMedGoogle Scholar
  18. 18.
    Rayavarapu S, Coley W, Cakir E, Jahnke V, Takeda S, Aoki Y, Grodish-Dressman H, Jaiswal JK, Hoffman EP, Brown KJ, Hathout Y, Nagaraju K (2013) Identification of disease specific pathways using in vivo SILAC proteomics in dystrophin deficient mdx mouse. Mol Cell Proteomics 12:1061–1073CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Holland A, Dowling P, Meleady P, Henry M, Zweyer M, Mundegar RR, Swandulla D, Ohlendieck K (2015) Label-free mass spectrometric analysis of the mdx-4cv diaphragm identifies the matricellular protein periostin as a potential factor involved in dystrophinopathy-related fibrosis. Proteomics 15:2318–2331CrossRefPubMedGoogle Scholar
  20. 20.
    Murphy S, Dowling P, Zweyer M, Mundegar RR, Henry M, Meleady P, Swandulla D, Ohlendieck K (2016) Proteomic analysis of dystrophin deficiency and associated changes in the aged mdx-4cv heart model of dystrophinopathy-related cardiomyopathy. J Proteomics 145:24–36CrossRefPubMedGoogle Scholar
  21. 21.
    Anderson JL, Head SI, Rae C, Morley JW (2002) Brain function in Duchenne muscular dystrophy. Brain 125:4–13CrossRefPubMedGoogle Scholar
  22. 22.
    Cyrulnik SE, Hinton VJ (2008) Duchenne muscular dystrophy: a cerebellar disorder? Neurosci Biobehav Rev 32:486–496CrossRefPubMedGoogle Scholar
  23. 23.
    Waite A, Brown SC, Blake DJ (2012) The dystrophin-glycoprotein complex in brain development and disease. Trends Neurosci 35:487–496CrossRefPubMedGoogle Scholar
  24. 24.
    Duchenne G (1867) The pathology of paralysis with muscular degeneration (paralysie myosclerotique), or paralysis with apparent hypertrophy. Br Med J 2:541–542CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Cotton S, Voudouris NJ, Greenwood KM (2001) Intelligence and Duchenne muscular dystrophy: full-scale, verbal, and performance intelligence quotients. Dev Med Child Neurol 43:497–501CrossRefPubMedGoogle Scholar
  26. 26.
    Moizard MP, Billard C, Toutain A, Berret F, Marmin N, Moraine C (1989) Are Dp71 and Dp140 brain dystrophin isoforms related to cognitive impairment in Duchenne muscular dystrophy? Am J Med Genet 80:32–41CrossRefGoogle Scholar
  27. 27.
    Pane M, Lombardo ME, Alfieri P, D’Amico A, Bianco F, Vasco G, Piccini G, Mallardi M, Romeo DM, Ricotti V, Ferlini A, Gualandi F, Vicari S, Bertini E, Berardinelli A, Mercuri E (2012) Attention deficit hyperactivity disorder and cognitive function in Duchenne muscular dystrophy: phenotype-genotype correlation. J Pediatr 161:705–709CrossRefPubMedGoogle Scholar
  28. 28.
    Banihani R, Smile S, Yoon G, Dupuis A, Mosleh M, Snider A, McAdam L (2015) Cognitive and neurobehavioral profile in boys with duchenne muscular dystrophy. J Child Neurol 30:1472–1482CrossRefPubMedGoogle Scholar
  29. 29.
    McGreevy JW, Hakim CH, McIntosh MA, Duan D (2015) Animal models of Duchenne muscular dystrophy: from basic mechanisms to gene therapy. Dis Model Mech 8:195–213CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Partridge TA (2013) The mdx mouse model as a surrogate for Duchenne muscular dystrophy. FEBS J 280:4177–4186CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Vaillend C, Billard JM, Laroche S (2004) Impaired long-term spatial and recognition memory and enhanced CA1 hippocampal LTP in the dystrophin-deficient Dmd(mdx) mouse. Neurobiol Dis 17:10–20CrossRefPubMedGoogle Scholar
  32. 32.
    Vaillend C, Rendon A, Misslin R, Ungerer A (1995) Influence of dystrophin-gene mutation on mdx mouse behavior. I. Retention deficits at long delays in spontaneous alternation and bar-pressing tasks. Behav Genet 25:569–579CrossRefPubMedGoogle Scholar
  33. 33.
    Muntoni F, Mateddu A, Serra G (1991) Passive avoidance behaviour deficit in the mdx mouse. Neuromuscul Disord 1:121–123CrossRefPubMedGoogle Scholar
  34. 34.
    Holland A, Carberry S, Ohlendieck K (2013) Proteomics of the dystrophin-glycoprotein complex and dystrophinopathy. Curr Protein Pept Sci 14:680–697CrossRefPubMedGoogle Scholar
  35. 35.
    Dowling P, Holland A, Ohlendieck K (2014) Mass spectrometry-based identification of muscle-associated and muscle-derived proteomic biomarkers of dystrophinopathies. J Neuromus Dis 1:15–40Google Scholar
  36. 36.
    Fuller HR, Graham LC, Llavero Hurtado M, Wishart TM (2016) Understanding the molecular consequences of inherited muscular dystrophies: advancements through proteomic experimentation. Expert Rev Proteomics 13:659–671CrossRefPubMedGoogle Scholar
  37. 37.
    Hathout Y, Seol H, Han MH, Zhang A, Brown KJ, Hoffman EP (2016) Clinical utility of serum biomarkers in Duchenne muscular dystrophy. Clin Proteomics 13:9CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Murphy S, Zweyer M, Henry M, Meleady P, Mundegar RR, Swandulla D, Ohlendieck K (2015) Label-free mass spectrometric analysis reveals complex changes in the brain proteome from the mdx-4cv mouse model of Duchenne muscular dystrophy. Clin Proteomics 12:27CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Craft GE, Chen A, Nairn AC (2013) Recent advances in quantitative neuroproteomics. Methods 61:186–218CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Rabilloud T, Chevallet M, Luche S, Lelong C (2010) Two-dimensional gel electrophoresis in proteomics: past, present and future. J Proteomics 73:2064–2077CrossRefPubMedGoogle Scholar
  41. 41.
    Chen EI, Cociorva D, Norris JL, Yates JR III (2007) Optimization of mass spectrometry-compatible surfactants for shotgun proteomics. J Proteome Res 6:2529–2253CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Gundry RL, White MY, Murray CI, Kane LA, Fu Q, Stanley BA, Van Eyk JE (2009) Preparation of proteins and peptides for mass spectrometry analysis in a bottom-up proteomics workflow. Curr Protoc Mol Biol Chapter 10:Unit10.25Google Scholar
  43. 43.
    Naldrett MJ, Zeidler R, Wilson KE, Kocourek A (2005) Concentration and desalting of peptide and protein samples with a newly developed C18 membrane in a microspin column format. J Biomol Tech 16:423–428PubMedPubMedCentralGoogle Scholar
  44. 44.
    Gorr TA, Vogel J (2015) Western blotting revisited: critical perusal of underappreciated technical issues. Proteomics Clin Appl 9:396–405CrossRefPubMedGoogle Scholar
  45. 45.
    Bradd SJ, Dunn MJ (1993) Analysis of membrane proteins by western blotting and enhanced chemiluminescence. Methods Mol Biol 19:211–218PubMedGoogle Scholar
  46. 46.
    Methogo RM, Dufresne-Martin G, Leclerc P, Leduc R, Klarskov K (2005) Mass spectrometric peptide fingerprinting of proteins after Western blotting on polyvinylidene fluoride and enhanced chemiluminescence detection. J Proteome Res 4:2216–2224CrossRefPubMedGoogle Scholar
  47. 47.
    Haan C, Behrmann I (2007) A cost effective non-commercial ECL-solution for Western blot detections yielding strong signals and low background. J Immunol Methods 318:11–19CrossRefPubMedGoogle Scholar
  48. 48.
    Mruk DD, Cheng CY (2011) Enhanced chemiluminescence (ECL) for routine immunoblotting. Spermatogenesis 1:121–122CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  50. 50.
    Kruger NJ (1994) The Bradford method for protein quantitation. Methods Mol Biol 32:9–15PubMedGoogle Scholar
  51. 51.
    Noble JE, Bailey MJ (2009) Quantitation of protein. Methods Enzymol 463:73–95CrossRefPubMedGoogle Scholar
  52. 52.
    Olsen JV, Ong SE, Mann M (2004) Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol Cell Proteomics 3:608–614CrossRefPubMedGoogle Scholar
  53. 53.
    Smith BJ (1994) SDS polyacrylamide gel electrophoresis of proteins. Methods Mol Biol 32:23–34PubMedGoogle Scholar
  54. 54.
    Walker JM (1994) Gradient SDS polyacrylamide gel electrophoresis of proteins. Methods Mol Biol 32:35–38PubMedGoogle Scholar
  55. 55.
    Gallagher SR (2006) One-dimensional SDS gel electrophoresis of proteins. Curr Protoc Mol Biol. Chapter 10:Unit 10.2AGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Department of BiologyMaynooth University, National University of Ireland MaynoothMaynoothIreland

Personalised recommendations