From gRNA Identification to the Restoration of Dystrophin Expression: A Dystrophin Gene Correction Strategy for Duchenne Muscular Dystrophy Mutations Using the CRISPR-Induced Deletion Method

  • Benjamin Duchêne
  • Jean-Paul Iyombe-Engembe
  • Joël Rousseau
  • Jacques P. Tremblay
  • Dominique L. Ouellet
Part of the Methods in Molecular Biology book series (MIMB, volume 1687)


The discovery of the CRISPR-Cas9 system raises hope for the treatment of many genetic disorders. We describe here an approach based on the use of a pair of single guide RNAs to form a hybrid exon that does not only restore the dystrophin gene reading frame but also results in the production of a dystrophin protein with an adequate structure of the central rod-domain, with a correct spectrin-like repeat. The therapeutic approach described here involved DMD patient cells having a deletion of exons 51–53 of the DMD gene.

Key words

CRISPR-Cas9 Duchenne muscular dystrophy (DMD) Dystrophin Hybrid exon Spectrin-like repeats 


  1. 1.
    Emery AE (2002) The muscular dystrophies. Lancet 359(9307):687–695CrossRefPubMedGoogle Scholar
  2. 2.
    Emery AE (1991) Population frequencies of inherited neuromuscular diseases--a world survey. Neuromuscul Disord 1(1):19–29CrossRefPubMedGoogle Scholar
  3. 3.
    Muntoni F, Torelli S, Ferlini A (2003) Dystrophin and mutations: one gene, several proteins, multiple phenotypes. Lancet Neurol 2(12):731–740CrossRefPubMedGoogle Scholar
  4. 4.
    Bladen CL et al (2015) The TREAT-NMD DMD global database: analysis of more than 7,000 Duchenne muscular dystrophy mutations. Hum Mutat 36(4):395–402CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Rybakova IN, Patel JR, Ervasti JM (2000) The dystrophin complex forms a mechanically strong link between the sarcolemma and costameric actin. J Cell Biol 150(5):1209–1214CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Le Rumeur E (2015) Dystrophin and the two related genetic diseases, Duchenne and Becker muscular dystrophies. Bosn J Basic Med Sci 15(3):14–20CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Nicolas A et al (2015) Becker muscular dystrophy severity is linked to the structure of dystrophin. Hum Mol Genet 24(5):1267–1279CrossRefPubMedGoogle Scholar
  8. 8.
    Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346(6213):1258096CrossRefPubMedGoogle Scholar
  9. 9.
    Jinek M et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821CrossRefPubMedGoogle Scholar
  10. 10.
    Cong L et al (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Iyombe-Engembe JP et al (2016) Efficient restoration of the dystrophin gene reading frame and protein structure in DMD myoblasts using the CinDel method. Mol Ther Nucleic Acids 5:e283CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ran FA et al (2013) Genome engineering using the CRISPR-Cas9 system. Nat Protoc 8(11):2281–2308CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Benjamin Duchêne
    • 1
  • Jean-Paul Iyombe-Engembe
    • 1
  • Joël Rousseau
    • 1
  • Jacques P. Tremblay
    • 1
  • Dominique L. Ouellet
    • 1
  1. 1.Centre de Recherche du CHU de Québec-Université LavalQuébecCanada

Personalised recommendations