Advertisement

AAV6 Vector Production and Purification for Muscle Gene Therapy

  • Christine L. Halbert
  • James M. Allen
  • Jeffrey S. Chamberlain
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1687)

Abstract

Vectors derived from adeno-associated viruses (AAV) have been generated using numerous naturally occurring and synthetic serotypes of the virus. Such vectors have proven to be extremely useful for a variety of gene transfer studies, both in vitro and in vivo, and are increasingly being used in gene therapy protocols for a variety of human disorders. Methods to produce AAV vectors typically rely on co-transfection of several different plasmid vectors that carry the transgene of interest (the gene to be delivered , in a “transfer plasmid”) and helper genes needed for AAV vector replication and packaging (helper plasmids). While the methods used to generate AAV are conceptually simple, minor variations in a variety of steps can result in significant differences in the overall yield of vector. Here we describe protocols for generating vectors derived from AAV6, which are particularly useful for gene transfer to muscle tissues.

Key words

Adeno-associated viral vector AAV AAV6 AAV9 Dystrophin Microdystrophin Gene therapy Systemic delivery Duchenne muscular dystrophy 

Notes

Acknowledgment

This work was supported by NIH grants U54AR065139 and R01HL122332, and by Grant # 409968 from the Muscular Dystrophy Association (USA).

References

  1. 1.
    Emery AE (2002) The muscular dystrophies. Lancet 359:687–695CrossRefPubMedGoogle Scholar
  2. 2.
    Emery AE, Muntoni F (2003) Duchenne Muscular Dystrophy. Oxford University Press, Oxford, EnglandGoogle Scholar
  3. 3.
    Hoffman EP, Fischbeck KH, Brown RH, Johnson M, Medori R, Loike JD, Harris JB, Waterston R, Brooke M, Specht L, Chamberlain JS, Caskey CT, Shapiro F, Kunkel LM (1988) Characterization of dystrophin in muscle-biopsy specimens from patients with Duchenne's or Becker's muscular dystrophy. N Engl J Med 318:1363–1368CrossRefPubMedGoogle Scholar
  4. 4.
    Chamberlain JS, Rando TA (eds) (2006) Duchenne muscular dystrophy: advances in therapeutics. Taylor and Francis, New York, NYGoogle Scholar
  5. 5.
    Bengtsson NE, Seto JT, Hall JK, Chamberlain JS, Odom GL (2016) Progress and prospects of gene therapy clinical trials for the muscular dystrophies. Hum.Mol.Genet 25:R9–17Google Scholar
  6. 6.
    Gregorevic P, Blankinship MJ, Allen JM, Crawford RW, Meuse L, Miller DG, Russell DW, Chamberlain JS (2004) Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat Med 10:828–834CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Yue Y, Pan X, Hakim CH, Kodippili K, Zhang K, Shin JH, Yang HT, McDonald T, Duan D (2015) Safe and bodywide muscle transduction in young adult Duchenne muscular dystrophy dogs with adeno-associated virus. Hum Mol Genet 24:5880–5890CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Childers MK, Joubert R, Poulard K, Moal C, Grange RW, Doering JA, Lawlor MW, Rider BE, Jamet T, Daniele N, Martin S, Riviere C, Soker T, Hammer C, Van Wittenberghe L, Lockard M, Guan X, Goddard M, Mitchell E, Barber J, Williams JK, Mack DL, Furth ME, Vignaud A, Masurier C, Mavilio F, Moullier P, Beggs AH, Buj-Bello A (2014) Gene therapy prolongs survival and restores function in murine and canine models of myotubular myopathy. Sci Transl Med 6:220ra210CrossRefGoogle Scholar
  9. 9.
    Salva MZ, Himeda CL, Tai PW, Nishiuchi E, Gregorevic P, Allen JM, Finn EE, Nguyen QG, Blankinship MJ, Meuse L, Chamberlain JS, Hauschka SD (2007) Design of tissue-specific regulatory cassettes for high-level rAAV-mediated expression in skeletal and cardiac muscle. Mol Ther 15:320–329CrossRefPubMedGoogle Scholar
  10. 10.
    Bengtsson NE, Hall JK, Odom GL, Phelps MP, Andrus CR, Hawkins RD, Hauschka SD, Chamberlain JR, Chamberlain JS (2017) Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun 8:14454CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Arnett AL, Beutler LR, Quintana A, Allen J, Finn E, Palmiter RD, Chamberlain JS (2013) Heparin-binding correlates with increased efficiency of AAV1- and AAV6-mediated transduction of striated muscle, but negatively impacts CNS transduction. Gene Ther 20:497–503CrossRefPubMedGoogle Scholar
  12. 12.
    Rutledge EA, Halbert CL, Russell DW (1998) Infectious clones and vectors derived from adeno-associated virus (AAV) serotypes other than AAV type 2. J Virol 72:309–319PubMedPubMedCentralGoogle Scholar
  13. 13.
    Gregorevic P, Schultz BR, Allen JM, Halldorson JB, Blankinship MJ, Meznarich NA, Kuhr CS, Doremus C, Finn E, Liggitt D, Chamberlain JS (2009) Evaluation of vascular delivery methodologies to enhance rAAV6-mediated gene transfer to canine striated musculature. Mol Ther 17:1427–1433CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Grimm D, Kay MA, Kleinschmidt JA (2003) Helper virus-free, optically controllable, and two-plasmid-based production of adeno-associated virus vectors of serotypes 1 to 6. Mol Ther 7:839–850CrossRefPubMedGoogle Scholar
  15. 15.
    Halbert CL, Metzger MJ, Lam SL, Miller AD (2011) Capsid-expressing DNA in AAV vectors and its elimination by use of an oversize capsid gene for vector production. Gene Ther 18:411–417CrossRefPubMedGoogle Scholar
  16. 16.
    Wang Z, Halbert CL, Lee D, Butts T, Tapscott SJ, Storb R, Miller AD (2014) Elimination of contaminating cap genes in AAV vector virions reduces immune responses and improves transgene expression in a canine gene therapy model. Gene Ther 21:363–370CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Christine L. Halbert
    • 1
  • James M. Allen
    • 1
  • Jeffrey S. Chamberlain
    • 1
  1. 1.Department of Neurology, Senator Paul D. Wellstone Muscular Dystrophy Cooperative Research CenterUniversity of WashingtonSeattleUSA

Personalised recommendations