Advertisement

Advanced Methods to Study the Cross Talk Between Fibro-Adipogenic Progenitors and Muscle Stem Cells

  • Luca Tucciarone
  • Usue Etxaniz
  • Martina Sandoná
  • Silvia Consalvi
  • Pier Lorenzo Puri
  • Valentina Saccone
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1687)

Abstract

Functional interactions between muscle (satellite) stem cells—MuSCs—and other cellular components of their niche (the fibro-adipogenic progenitors—FAPs) coordinate regeneration of injured as well as diseased skeletal muscles. These interactions are largely mediated by secretory networks, whose integrity is critical to determine whether repair occurs by compensatory regeneration leading to formation of new contractile fibers, or by maladaptive formation of fibrotic scars and fat infiltration. Here we provide the description of methods for isolation of FAPs and MuSCs from muscles of wild type and dystrophic mice, and protocols of cocultures as well as MuSC’s exposure to FAP- derived exosomes. These methods and protocols can be exploited in murine models of acute muscle injury to investigate salient features of physiological repair, and in models of muscular diseases to identify dysregulated networks that compromise functional interactions between cellular components of the regeneration environment during disease progression. We predict that exporting these procedures to patient-derived muscle samples will contribute to advance our understanding of human skeletal myogenesis and related disorders.

Key words

Fibro-adipogenic progenitors Exosomes Satellite cells Transwell cocultures Skeletal muscle 

References

  1. 1.
    Tidball JG (2011) Mechanisms of muscle injury, repair, and regeneration. Compr Physiol 1(4):2029–2062PubMedGoogle Scholar
  2. 2.
    Mauro A (1961) Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9:493–495CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Dumont NA, Wang YX, Rudnicki MA (2015) Intrinsic and extrinsic mechanisms regulating satellite cell function. Development 142(9):1572–1581CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Brack AS, Rando TA (2012) Tissue-specific stem cells: lessons from the skeletal muscle satellite cell. Cell Stem Cell 10(5):504–514CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bentzinger CF, Wang YX, Dumont NA, Rudnicki MA (2013) Cellular dynamics in the muscle satellite cell niche. EMBO Rep 14(12):1062–1072CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Tidball JG, Dorshkind K, Wehling-Henricks M (2014) Shared signaling systems in myeloid cell-mediated muscle regeneration. Development 141(6):1184–1196CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kharraz Y, Guerra J, Mann CJ, Serrano AL, Muñoz-Cánoves P (2013) Macrophage plasticity and the role of inflammation in skeletal muscle repair. Mediat Inflamm 2013:491497CrossRefGoogle Scholar
  8. 8.
    Joe AW, Yi L, Natarajan A, Le Grand F, So L, Wang J, Rudnicki MA, Rossi FM (2010) Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol 2:153–163CrossRefGoogle Scholar
  9. 9.
    Uezumi A, Fukada S, Yamamoto N, Takeda S, Tsuchida K (2010) Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat Cell Biol 2:143–152CrossRefGoogle Scholar
  10. 10.
    Farup J, Madaro L, Puri PL, Mikkelsen UR (2015) Interactions between muscle stem cells, mesenchymal-derived cells and immune cells in muscle homeostasis, regeneration and disease. Cell Death Dis 6:e1830CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wosczyna MN, Biswas AA, Cogswell CA, Goldhamer DJ (2012) Multipotent progenitors resident in the skeletal muscle interstitium exhibit robust BMP-dependent osteogenic activity and mediate heterotopic ossification. J Bone Miner Res 27(5):1004–1017CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Boon RA, Vickers KC (2013) Intercellular transport of microRNAs. Arterioscler Thromb Vasc Biol 33(2):186–192CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Consalvi S, Sandoná M, Saccone V (2016) Epigenetic reprogramming of muscle progenitors: inspiration for clinical therapies. Stem Cells Int 2016:6093601CrossRefPubMedGoogle Scholar
  14. 14.
    Vlassov AV, Magdaleno S, Setterquist R, Conrad R (2012) Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta 1820(7):940–948CrossRefPubMedGoogle Scholar
  15. 15.
    Nakamura Y, Miyaki S, Ishitobi H, Matsuyama S, Nakasa T, Kamei N, Akimoto T, Higashi Y, Ochi M (2015) Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration. FEBS Lett 589(11):1257–1265CrossRefPubMedGoogle Scholar
  16. 16.
    Mozzetta C, Consalvi S, Saccone V, Tierney M, Diamantini A, Mitchell KJ et al (2013) Fibroadipogenic progenitors mediate the ability of HDAC inhibitors to promote regeneration in dystrophic muscles of young, but not old mdx mice. EMBO Mol Med 5(4):626–663CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Saccone V, Consalvi S, Giordani L, Mozzetta C, Barozzi I, Sandona M et al (2014) HDAC-regulated myomiRs control BAF60 variant exchange and direct the functional phenotype of fibro-adipogenic progenitors in dystrophic muscles. Genes Dev 28(8):841–857CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Dumont NA, Wang YX, von Maltzahn J, Pasut A, Bentzinger CF, Brun CE, Rudnicki MA (2015) Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nat Med 21(12):1455–1463CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Moyle LA, Zammit PS (2014) Isolation, culture and immunostaining of skeletal muscle fibres to study myogenic progression in satellite cells. Methods Mol Biol 1210:63–78CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Fondazione Santa LuciaRomeItaly
  2. 2.DAHFMO, Unit of Histology and Medical EmbryologySapienza University of RomeRomeItaly
  3. 3.Development Aging and Regeneration ProgramSanford Burnham Prebys Medical Discovery InstituteLa JollaUSA

Personalised recommendations