Test of Antifibrotic Drugs in a Cellular Model of Fibrosis Based on Muscle-Derived Fibroblasts from Duchenne Muscular Dystrophy Patients

Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1687)

Abstract

An in vitro model of muscle fibrosis, based on the use of primary human fibroblasts isolated from muscle biopsies of patients affected by Duchenne muscular dystrophies (DMD) and cultivated in monolayer and 3D conditions, is used to test the potential antifibrotic activity of pirfenidone (PFD). This in vitro model may be usefully also to evaluate the toxicity and efficacy of other candidate molecules for the treatment of fibrosis. The drug toxicity is evaluated using a colorimetric assay based on the conversion of tetrazolium salt (MTT) to insoluble formazan, while the effect of the drug on cell proliferation is measured with the bromodeoxyuridine incorporation assay. The efficacy of the drug is evaluated in fibroblast monolayers by quantitating synthesis and deposition of intracellular collagen with a spectrophotometric picrosirius red-based assay, and by quantitating cell migration using a “scratch” assay. The efficacy of PFD as antifibrotic drug is also evaluated in a 3D fibroblast model by measuring diameters and number of nodules.

Key words

Duchenne muscle dystrophy Fibrosis Fibroblasts In vitro model Pirfenidone Toxicity Proliferation Collagen Migration Fibrotic nodules 

References

  1. 1.
    Fausther M, Lavoie EG, Dranoff JA (2013) Contribution of myofibroblasts of different origins to liver fibrosis. Curr Pathobiol Rep 1:225–230CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    LeBleu VS, Taduri G, O'Connell J, Teng Y, Cooke VG, Woda C, Sugimoto H, Kalluri R (2013) Origin and function of myofibroblasts in kidney fibrosis. Nat Med 19:1047–1053. http://dx.doi.org/10.1038/nm.3218 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Herpel E, Pritsch M, Koch A, Dengler TJ, Schirmacher P, Schnabel PA (2006) Interstitial fibrosis in the heart: differences in extracellular matrix proteins and matrix metalloproteinases in end-stage dilated, ischaemic and valvular cardiomyopathy. Histopathology 48:736–747CrossRefPubMedGoogle Scholar
  4. 4.
    Li YY, Feng YQ, Kadokami T, McTiernan CF, Draviam R, Watkins SC, Feldman AM (2000) Myocardial extracellular matrix remodeling in transgenic mice overexpressing tumor necrosis factor alpha can be modulated by anti-tumor necrosis factor alpha therapy. Proc Natl Acad Sci U S A 97:12746–12751CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gilbane AJ, Denton CP, Holmes AM (2013) Scleroderma pathogenesis: a pivotal role for fibroblasts as effector cells. Arthritis Res Ther 15:215–222CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Selman M, King TE, Pardo A (2001) Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med 134:136–151CrossRefPubMedGoogle Scholar
  7. 7.
    Zanotti S, Gibertini S, Savadori P, Mantegazza R, Mora M (2013) Duchenne muscular dystrophy fibroblast nodules: a cell-based assay for screening anti-fibrotic agents. Cell Tissue Res 352:659–670. doi: 10.1007/s00441-013-1601-2 CrossRefPubMedGoogle Scholar
  8. 8.
    Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G (2007) The myofibroblast: one function, multiple origins. Am J Pathol 170:1807–1816CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Desmoulière A, Chaponnier C, Gabbiani G (2005) Tissue repair, contraction, and the myofibroblast. Wound Repair Regen 13:7–12CrossRefPubMedGoogle Scholar
  10. 10.
    Zanotti S, Gibertini S, Mora M (2010) Altered production of extra-cellular matrix components by muscle-derived Duchenne muscular dystrophy fibroblasts before and after TGF-beta1 treatment. Cell Tissue Res 339:397–410. doi: 10.1007/s00441-009-0889-4 CrossRefPubMedGoogle Scholar
  11. 11.
    Zanotti S, Gibertini S, Bragato C, Mantegazza R, Morandi L, Mora M (2011) Fibroblasts from the muscles of Duchenne muscular dystrophy patients are resistant to cell detachment apoptosis. Exp Cell Res 317:2536–2547. doi: 10.1016/j.yexcr.2011.08.004 CrossRefPubMedGoogle Scholar
  12. 12.
    Zanotti S, Bragato C, Zucchella A, Maggi L, Mantegazza R, Morandi L, Mora M (2016) Anti-fibrotic effect of pirfenidone in muscle derived-fibroblasts from Duchenne muscular dystrophy patients. Life Sci 145:127–136. doi: 10.1016/j.lfs.2015.12.015 CrossRefPubMedGoogle Scholar
  13. 13.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63CrossRefPubMedGoogle Scholar
  14. 14.
    Slater TF, Sawyer B, Straeuli U (1963) Studies on succinate-tetrazolium reductase systems. Points of coupling of four different tetrazolium salts. Biochim Biophys Acta 77:383–393CrossRefPubMedGoogle Scholar
  15. 15.
    van de Loosdrecht AA, Beelen RH, Ossenkoppele GJ, Broekhoven MG, Langenhuijsen MM (1994) A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia. J Immunol Methods 174:311–320CrossRefPubMedGoogle Scholar
  16. 16.
    Martinon F, Rabian C, Loiseau P, Ternynck T, Avrameas S, Colombani J (1987) In vitro proliferation of human lymphocytes measured by an enzyme immunoassay using an anti-5-bromo-2-deoxyuridine monoclonal antibody. J Clin Lab Immunol 23:153–159PubMedGoogle Scholar
  17. 17.
    Crane AM, Bhattacharya SK (2013) The use of bromodeoxyuridine incorporation assays to assess corneal stem cell proliferation. Methods Mol Biol 1014:65–70CrossRefPubMedGoogle Scholar
  18. 18.
    Walsh BJ, Thornton SC, Penny R, Breit SN (1992) Microplate reader-based quantitation of collagens. Anal Biochem 203:187–190CrossRefPubMedGoogle Scholar
  19. 19.
    Xu Q, Norman JT, Shrivastav S, Lucio-Cazana J, Kopp JB (2007) In vitro models of TGF-beta-induced fibrosis suitable for highthroughput screening of anti-fibrotic agents. Am J Physiol Renal Physiol 293:F631–F640CrossRefPubMedGoogle Scholar
  20. 20.
    Rodriguez LG, Wu X, Guan JL (2005) Wound-healing assay. Methods Mol Biol 294:23–29PubMedGoogle Scholar
  21. 21.
    Liang C-C, Park AY, Jun-Lin G (2007) In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2:329–333CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.Muscle Cell Biology Lab, Neuromuscular Diseases and Neuroimmunology UnitFondazione IRCCS Istituto Neurologico “C. Besta”MilanItaly

Personalised recommendations