Proton Nuclear Magnetic Resonance (1H NMR) Spectroscopy-Based Analysis of Lipid Components in Serum/Plasma of Patients with Duchenne Muscular Dystrophy (DMD)

  • Niraj Kumar Srivastava
Part of the Methods in Molecular Biology book series (MIMB, volume 1687)


Proton nuclear magnetic resonance spectroscopy (1H NMR) is a useful tool for the analysis of lipid components in biofluids such as serum/plasma. Such tool is applied for the analysis of lipid components in serum/plasma of patients with Duchenne muscular dystrophy (DMD). The practical approach of sampling, storage, lipid extraction procedure, sample preparation before performing the 1H NMR spectroscopy experiments is presented. All the experimental parameters of NMR spectroscopy are also described. Details of the assignments of lipid components (qualitative analysis) and quantification of particular lipid components (quantitative analysis) are explained.

Key words

Triglycerides Phospholipids Cholesterol Muscular dystrophy DMD NMR spectroscopy Metabolomics 



Free cholesterol


Esterified cholesterol


Duchenne Muscular Dystrophy


Nuclear magnetic resonance






[3-(trimethylsilyl) propionic-2, 2, 3, 3-d4 acid, sodium salt]



The author wishes to thank University Grant Commission, Government of India, for their generous financial support [Grant number: No.F.4-2/2006 (BSR)/13-194/2008 (BSR)].


  1. 1.
    Gillham B, Papachristodoulou DK, Thomas JH (1997) Wills biochemical basis of medicine, 3rd edn. Butterworth-Heinemann, a division of reed educational and professional publishing Ltd., OxfordGoogle Scholar
  2. 2.
    Christie WW (1982) Lipid analysis, 2nd edn. Pergamon Press, Elmsford, NYGoogle Scholar
  3. 3.
    Cullis PR, Fenske DB, Hope MJ (1996) Physical properties and functional roles of lipids in membranes. In: Vance DE, Vance JE (eds) Biochemistry of lipids, lipoproteins and membranes. Elsevier, Amsterdam; New YorkGoogle Scholar
  4. 4.
    Gunstone FD, Harwood JL, Padley FB (1986) The lipid handbook. Chapman & Hall, LondonCrossRefGoogle Scholar
  5. 5.
    Gurr MI, Harwood JL (1991) Lipid biochemistry: an introduction, 4th edn. Chapman & Hall, LondonCrossRefGoogle Scholar
  6. 6.
    Murray KR, Granner DK, Mayes PA, Rodwell VW (2000) Harper’s illustrated biochemistry, 26th edn. Lange Medical Books/McGraw-Hill, New YorkGoogle Scholar
  7. 7.
    Anthony A, Russell JA (2008) Neuromuscular disorders. McGraw-Hill Professional, New YorkGoogle Scholar
  8. 8.
    Emery AEH (2002) The muscular dystrophies. Lancet 359:687–695CrossRefPubMedGoogle Scholar
  9. 9.
    Nagy B, Samaha FJ (1983) Physiology of normal and disease muscle. In: Frolich ED (ed) Pathophysiology. JB Lippincott, PhiladelphiaGoogle Scholar
  10. 10.
    Kunze D, Olthoff D, Schellnack K (1967) Dtsch Gesundheitsw 22:2405–2409PubMedGoogle Scholar
  11. 11.
    Temin PA, Islamova IB (1983) Zh Nevropatol Psikhiatr Im S S Korsakova 83:1632–1636PubMedGoogle Scholar
  12. 12.
    Piperi C, Papapanagiotou A, Kalofoutis C, Zisaki K, Michalaki V, Tziraki A, Kalofoutis A (2004) Altered long chain fatty acids composition in Duchenne muscular dystrophy erythrocytes. In Vivo 18:799–802PubMedGoogle Scholar
  13. 13.
    Nishio H, Wada H, Matsuo T, Horikawa H, Takahashi K, Nakajima T, Matsuo M, Nakamura H (1990) Glucose, free fatty acid and ketone body metabolism in Duchenne muscular dystrophy. Brain and Development 12:390–402CrossRefPubMedGoogle Scholar
  14. 14.
    Srivastava NK, Pradhan S, Mittal B, Gowda GA (2010) High resolution NMR based analysis of serum lipids in patients with Duchenne muscular dystrophy and its possible diagnostic significance. NMR Biomed 23:13–22CrossRefPubMedGoogle Scholar
  15. 15.
    Oostendorp M, Engelke UF, Willemsen MA, Wevers RA (2006) Diagnosing inborn errors of lipid metabolism with proton nuclear magnetic resonance spectroscopy. Clin Chem 52:1395–1405CrossRefPubMedGoogle Scholar
  16. 16.
    Subramanian A, Shankar Joshi B, Roy AD, Roy R, Gupta V, Dang RS (2008) NMR spectroscopic identification of cholesterol esters, plasmalogen and phenolic glycolipids as fingerprint markers of human intracranial tuberculomas. NMR Biomed 21:272–288CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  1. 1.School of Life Sciences (SLS)Jawaharlal Nehru University (JNU)New DelhiUSA

Personalised recommendations