Advertisement

Designing Effective Antisense Oligonucleotides for Exon Skipping

  • Takenori Shimo
  • Rika Maruyama
  • Toshifumi Yokota
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1687)

Abstract

During the past 10 years, antisense oligonucleotide-mediated exon skipping and splice modulation have proven to be powerful tools for correction of mRNA splicing in genetic diseases. In 2016, the US Food and Drug Administration (FDA)-approved Exondys 51 (eteplirsen) and Spinraza (nusinersen), the first exon skipping and exon inclusion drugs, to treat patients with Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA), respectively. The exon skipping of DMD mRNA aims to restore the disrupted reading frame using antisense oligonucleotides (AONs), allowing the production of truncated but partly functional dystrophin proteins, and slow down the progression of the disease. This approach has also been explored in several other genetic disorders, including laminin α2 chain-deficient congenital muscular dystrophy, dysferlin-deficient muscular dystrophy (e.g., Miyoshi myopathy and limb-girdle muscular dystrophy type 2B), sarcoglycanopathy (limb-girdle muscular dystrophy type 2C), and Fukuyama congenital muscular dystrophy. Antisense-mediated exon skipping is also a powerful tool to examine the function of genes and exons. A significant challenge in exon skipping is how to design effective AONs. The mechanism of mRNA splicing is highly complex with many factors involved. The selection of target sites, the length of AONs, the AON chemistry, and the melting temperature versus the RNA strand play important roles. A cocktail of AONs can be employed to skip multiples exons. In this chapter, we discuss the design of effective AONs for exon skipping.

Key words

Exon skipping Antisense oligonucleotides Splice switching Duchenne muscular dystrophy Becker muscular dystrophy Dystrophin Eteplirsen Phosphorodiamidate morpholino oligomers (PMOs) Locked nucleic acid (LNA) 2′-O-methyl RNA 

Notes

Acknowledgements

This work is supported by the Muscular Dystrophy Canada, the Friends of Garrett Cumming Research Fund, the HM Toupin Neurological Science Research Fund, the Canadian Institutes of Health Research (CIHR), the Alberta Innovates: Health Solutions (AIHS), the Canada Foundation for Innovation (CFI), the Alberta Advanced Education and Technology, and the Women and Children’s Health Research Institute (WCHRI).

References

  1. 1.
    Lee JJ, Yokota T (2013) Antisense therapy in neurology. J Pers Med 3(3):144–176. doi: 10.3390/jpm3030144 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Guncay A, Yokota T (2015) Antisense oligonucleotide drugs for Duchenne muscular dystrophy: how far have we come and what does the future hold? Future Med Chem 7(13):1631–1635. doi: 10.4155/fmc.15.116 CrossRefPubMedGoogle Scholar
  3. 3.
    Vickers TA, Zhang H, Graham MJ, Lemonidis KM, Zhao C, Dean NM (2006) Modification of MyD88 mRNA splicing and inhibition of IL-1beta signaling in cell culture and in mice with a 2′-O-methoxyethyl-modified oligonucleotide. J Immunol 176(6):3652–3661CrossRefPubMedGoogle Scholar
  4. 4.
    (2016) Eteplirsen (Exondys 51) for duchenne muscular dystrophy. Med Lett Drugs Ther 58(1507):145–146Google Scholar
  5. 5.
    Nakamura A, Fueki N, Shiba N, Motoki H, Miyazaki D, Nishizawa H, Echigoya Y, Yokota T, Aoki Y, Takeda S (2016) Deletion of exons 3-9 encompassing a mutational hot spot in the DMD gene presents an asymptomatic phenotype, indicating a target region for multiexon skipping therapy. J Hum Genet 61(7):663–667. doi: 10.1038/jhg.2016.28 CrossRefPubMedGoogle Scholar
  6. 6.
    Koenig M, Beggs AH, Moyer M, Scherpf S, Heindrich K, Bettecken T, Meng G, Muller CR, Lindlof M, Kaariainen H, de la Chapellet A, Kiuru A, Savontaus ML, Gilgenkrantz H, Recan D, Chelly J, Kaplan JC, Covone AE, Archidiacono N, Romeo G, Liechti-Gailati S, Schneider V, Braga S, Moser H, Darras BT, Murphy P, Francke U, Chen JD, Morgan G, Denton M, Greenberg CR, Wrogemann K, Blonden LA, van Paassen MB, van Ommen GJ, Kunkel LM (1989) The molecular basis for Duchenne versus Becker muscular dystrophy: correlation of severity with type of deletion. Am J Hum Genet 45(4):498–506PubMedPubMedCentralGoogle Scholar
  7. 7.
    Nakamura A, Shiba N, Miyazaki D, Nishizawa H, Inaba Y, Fueki N, Maruyama R, Echigoya Y, Yokota T (2016) Comparison of the phenotypes of patients harboring in-frame deletions starting at exon 45 in the Duchenne muscular dystrophy gene indicates potential for the development of exon skipping therapy. J Hum Genet 62(4):459–463. doi: 10.1038/jhg.2016.152 CrossRefPubMedGoogle Scholar
  8. 8.
    Aartsma-Rus A, Fokkema I, Verschuuren J, Ginjaar I, van Deutekom J, van Ommen GJ, den Dunnen JT (2009) Theoretic applicability of antisense-mediated exon skipping for Duchenne muscular dystrophy mutations. Hum Mutat 30(3):293–299. doi: 10.1002/humu.20918 CrossRefPubMedGoogle Scholar
  9. 9.
    Shimo T, Tachibana K, Saito K, Yoshida T, Tomita E, Waki R, Yamamoto T, Doi T, Inoue T, Kawakami J, Obika S (2014) Design and evaluation of locked nucleic acid-based splice-switching oligonucleotides in vitro. Nucleic Acids Res 42(12):8174–8187. doi: 10.1093/nar/gku512 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Goyenvalle A, Griffith G, Babbs A, El Andaloussi S, Ezzat K, Avril A, Dugovic B, Chaussenot R, Ferry A, Voit T, Amthor H, Buhr C, Schurch S, Wood MJ, Davies KE, Vaillend C, Leumann C, Garcia L (2015) Functional correction in mouse models of muscular dystrophy using exon-skipping tricyclo-DNA oligomers. Nat Med 21(3):270–275. doi: 10.1038/nm.3765 CrossRefPubMedGoogle Scholar
  11. 11.
    Takagi M, Yagi M, Ishibashi K, Takeshima Y, Surono A, Matsuo M, Koizumi M (2004) Design of 2′-O-Me RNA/ENA chimera oligonucleotides to induce exon skipping in dystrophin pre-mRNA. Nucleic Acids Symp Ser (Oxf) 48:297–298. doi: 10.1093/nass/48.1.297 CrossRefGoogle Scholar
  12. 12.
    Miskew Nichols B, Aoki Y, Kuraoka M, Lee JJ, Takeda S, Yokota T (2016) Multi-exon skipping using cocktail antisense oligonucleotides in the canine X-linked muscular dystrophy. J Vis Exp 111. doi: 10.3791/53776
  13. 13.
    Echigoya Y, Aoki Y, Miskew B, Panesar D, Touznik A, Nagata T, Tanihata J, Nakamura A, Nagaraju K, Yokota T (2015) Long-term efficacy of systemic multiexon skipping targeting dystrophin exons 45-55 with a cocktail of vivo-morpholinos in mdx52 mice. Mol Ther Nucleic Acids 4:e225. doi: 10.1038/mtna.2014.76 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Yokota T, Lu QL, Partridge T, Kobayashi M, Nakamura A, Takeda S, Hoffman E (2009) Efficacy of systemic morpholino exon-skipping in Duchenne dystrophy dogs. Ann Neurol 65(6):667–676. doi: 10.1002/ana.21627 CrossRefPubMedGoogle Scholar
  15. 15.
    Maruyama R, Aoki Y, Echigoya Y, Caluseriu O, Takeda S, Yokota T (2016) Morpholino-mediated multi-exon skipping in dystrophic dogs. In: Moulton H, Moulton J (eds) Morpholino oligos. Humana Press, New York. vol In PressGoogle Scholar
  16. 16.
    Yokota T, Nakamura A, Nagata T, Saito T, Kobayashi M, Aoki Y, Echigoya Y, Partridge T, Hoffman EP, Takeda S (2012) Extensive and prolonged restoration of dystrophin expression with vivo-morpholino-mediated multiple exon skipping in dystrophic dogs. Nucleic Acid Ther 22(5):306–315. doi: 10.1089/nat.2012.0368 PubMedPubMedCentralGoogle Scholar
  17. 17.
    Aoki Y, Nagata T, Yokota T, Nakamura A, Wood MJ, Partridge T, Takeda S (2013) Highly efficient in vivo delivery of PMO into regenerating myotubes and rescue in laminin-alpha2 chain-null congenital muscular dystrophy mice. Hum Mol Genet 22(24):4914–4928. doi: 10.1093/hmg/ddt341 CrossRefPubMedGoogle Scholar
  18. 18.
    Wein N, Avril A, Bartoli M, Beley C, Chaouch S, Laforet P, Behin A, Butler-Browne G, Mouly V, Krahn M, Garcia L, Levy N (2010) Efficient bypass of mutations in dysferlin deficient patient cells by antisense-induced exon skipping. Hum Mutat 31(2):136–142. doi: 10.1002/humu.21160 CrossRefPubMedGoogle Scholar
  19. 19.
    Touznik A, Lee JJ, Yokota T (2014) New developments in exon skipping and splice modulation therapies for neuromuscular diseases. Expert Opin Biol Ther 14(6):809–819. doi: 10.1517/14712598.2014.896335 CrossRefPubMedGoogle Scholar
  20. 20.
    Taniguchi-Ikeda M, Kobayashi K, Kanagawa M, Yu CC, Mori K, Oda T, Kuga A, Kurahashi H, Akman HO, DiMauro S, Kaji R, Yokota T, Takeda S, Toda T (2011) Pathogenic exon-trapping by SVA retrotransposon and rescue in Fukuyama muscular dystrophy. Nature 478(7367):127–131. doi: 10.1038/nature10456 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Spraggon L, Cartegni L (2013) Antisense modulation of RNA processing as a therapeutic approach in cancer therapy. Drug Discov Today Ther Strateg 10(3):e139–e148. doi: 10.1016/j.ddstr.2013.06.002 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zammarchi F, de Stanchina E, Bournazou E, Supakorndej T, Martires K, Riedel E, Corben AD, Bromberg JF, Cartegni L (2011) Antitumorigenic potential of STAT3 alternative splicing modulation. Proc Natl Acad Sci U S A 108(43):17779–17784. doi: 10.1073/pnas.1108482108 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lentz JJ, Jodelka FM, Hinrich AJ, McCaffrey KE, Farris HE, Spalitta MJ, Bazan NG, Duelli DM, Rigo F, Hastings ML (2013) Rescue of hearing and vestibular function by antisense oligonucleotides in a mouse model of human deafness. Nat Med 19(3):345–350. doi: 10.1038/nm.3106 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Wojtkowiak-Szlachcic A, Taylor K, Stepniak-Konieczna E, Sznajder LJ, Mykowska A, Sroka J, Thornton CA, Sobczak K (2015) Short antisense-locked nucleic acids (all-LNAs) correct alternative splicing abnormalities in myotonic dystrophy. Nucleic Acids Res 43(6):3318–3331. doi: 10.1093/nar/gkv163 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Gao QQ, Wyatt E, Goldstein JA, LoPresti P, Castillo LM, Gazda A, Petrossian N, Earley JU, Hadhazy M, Barefield DY, Demonbreun AR, Bonnemann C, Wolf M, McNally EM (2015) Reengineering a transmembrane protein to treat muscular dystrophy using exon skipping. J Clin Invest 125(11):4186–4195. doi: 10.1172/JCI82768 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lee JJA, Yokota T (2016) Translational research in nucleic acid therapies for muscular dystrophies. In: Takeda S, Miyagoe-suzuki Y, Mori-Yoshimura M (eds) Translational research in muscular dystrophy, 1st edn. Springer, Tokyo, pp 87–102. doi: 10.1007/978-4-431-55678-7 CrossRefGoogle Scholar
  27. 27.
    Dominov JA, Uyan O, Sapp PC, McKenna-Yasek D, Nallamilli BR, Hegde M, Brown RH Jr (2014) A novel dysferlin mutant pseudoexon bypassed with antisense oligonucleotides. Ann Clin Transl Neurol 1(9):703–720. doi: 10.1002/acn3.96 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Summerton J, Weller D (1997) Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev 7(3):187–195CrossRefPubMedGoogle Scholar
  29. 29.
    Yu X, Bao B, Echigoya Y, Yokota T (2015) Dystrophin-deficient large animal models: translational research and exon skipping. Am J Transl Res 7(8):1314–1331PubMedPubMedCentralGoogle Scholar
  30. 30.
    Lu QL, Rabinowitz A, Chen YC, Yokota T, Yin H, Alter J, Jadoon A, Bou-Gharios G, Partridge T (2005) Systemic delivery of antisense oligoribonucleotide restores dystrophin expression in body-wide skeletal muscles. Proc Natl Acad Sci U S A 102(1):198–203. doi: 10.1073/pnas.0406700102 CrossRefPubMedGoogle Scholar
  31. 31.
    Chiriboga CA, Swoboda KJ, Darras BT, Iannaccone ST, Montes J, De Vivo DC, Norris DA, Bennett CF, Bishop KM (2016) Results from a phase 1 study of nusinersen (ISIS-SMNRx) in children with spinal muscular atrophy. Neurology 86(10):890–897. doi: 10.1212/WNL.0000000000002445 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Rodrigues M, Echigoya Y, Fukada S, Yokota T (2016) Current translational research and murine models for duchenne muscular dystrophy. J Neuromuscul Dis 3(1):29–48CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Yang CJ, Wang L, Wu Y, Kim Y, Medley CD, Lin H, Tan W (2007) Synthesis and investigation of deoxyribonucleic acid/locked nucleic acid chimeric molecular beacons. Nucleic Acids Res 35(12):4030–4041. doi: 10.1093/nar/gkm358 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Echigoya Y, Mouly V, Garcia L, Yokota T, Duddy W (2015) In silico screening based on predictive algorithms as a design tool for exon skipping oligonucleotides in Duchenne muscular dystrophy. PLoS One 10(3):e0120058. doi: 10.1371/journal.pone.0120058 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Aartsma-Rus A, van Vliet L, Hirschi M, Janson AA, Heemskerk H, de Winter CL, de Kimpe S, van Deutekom JC, t Hoen PA, van Ommen GJ (2009) Guidelines for antisense oligonucleotide design and insight into splice-modulating mechanisms. Mol Ther 17(3):548–553. doi: 10.1038/mt.2008.205 CrossRefPubMedGoogle Scholar
  36. 36.
    Yokota T, Takeda S, Lu QL, Partridge TA, Nakamura A, Hoffman EP (2009) A renaissance for antisense oligonucleotide drugs in neurology: exon skipping breaks new ground. Arch Neurol 66(1):32–38CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Saito T, Nakamura A, Aoki Y, Yokota T, Okada T, Osawa M, Takeda S (2010) Antisense PMO found in dystrophic dog model was effective in cells from exon 7-deleted DMD patient. PLoS One 5(8):e12239. doi: 10.1371/journal.pone.0012239 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Echigoya Y, Yokota T (2014) Skipping multiple exons of dystrophin transcripts using cocktail antisense oligonucleotides. Nucleic Acid Ther 24(1):57–68. doi: 10.1089/nat.2013.0451 CrossRefPubMedGoogle Scholar
  39. 39.
    Aoki Y, Yokota T, Wood MJ (2013) Development of multiexon skipping antisense oligonucleotide therapy for Duchenne muscular dystrophy. Biomed Res Int 2013:402369. doi: 10.1155/2013/402369 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Yokota T, Duddy W, Echigoya Y, Kolski H (2012) Exon skipping for nonsense mutations in Duchenne muscular dystrophy: too many mutations, too few patients? Expert Opin Biol Ther 12(9):1141–1152. doi: 10.1517/14712598.2012.693469 CrossRefPubMedGoogle Scholar
  41. 41.
    Aartsma-Rus A, Van Deutekom JC, Fokkema IF, Van Ommen GJ, Den Dunnen JT (2006) Entries in the Leiden Duchenne muscular dystrophy mutation database: an overview of mutation types and paradoxical cases that confirm the reading-frame rule. Muscle Nerve 34(2):135–144CrossRefPubMedGoogle Scholar
  42. 42.
    Desmet FO, Hamroun D, Lalande M, Collod-Beroud G, Claustres M, Beroud C (2009) Human splicing finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 37(9):e67. doi: 10.1093/nar/gkp215 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kibbe WA (2007) OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 35(Web Server issue):W43–W46. doi: 10.1093/nar/gkm234 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Hubbard T, Barker D, Birney E, Cameron G, Chen Y, Clark L, Cox T, Cuff J, Curwen V, Down T, Durbin R, Eyras E, Gilbert J, Hammond M, Huminiecki L, Kasprzyk A, Lehvaslaiho H, Lijnzaad P, Melsopp C, Mongin E, Pettett R, Pocock M, Potter S, Rust A, Schmidt E, Searle S, Slater G, Smith J, Spooner W, Stabenau A, Stalker J, Stupka E, Ureta-Vidal A, Vastrik I, Clamp M (2002) The Ensembl genome database project. Nucleic Acids Res 30(1):38–41CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Speir ML, Zweig AS, Rosenbloom KR, Raney BJ, Paten B, Nejad P, Lee BT, Learned K, Karolchik D, Hinrichs AS, Heitner S, Harte RA, Haeussler M, Guruvadoo L, Fujita PA, Eisenhart C, Diekhans M, Clawson H, Casper J, Barber GP, Haussler D, Kuhn RM, Kent WJ (2016) The UCSC genome browser database: 2016 update. Nucleic Acids Res 44(D1):D717–D725. doi: 10.1093/nar/gkv1275 CrossRefPubMedGoogle Scholar
  47. 47.
    Yokota T, Pistilli E, Duddy W, Nagaraju K (2007) Potential of oligonucleotide-mediated exon-skipping therapy for Duchenne muscular dystrophy. Expert Opin Biol Ther 7(6):831–842. doi: 10.1517/14712598.7.6.831 CrossRefPubMedGoogle Scholar
  48. 48.
    Yokota T, Duddy W, Partridge T (2007) Optimizing exon skipping therapies for DMD. Acta Myol 26(3):179–184PubMedPubMedCentralGoogle Scholar
  49. 49.
    Yokota T, Hoffman E, Takeda S (2011) Antisense oligo-mediated multiple exon skipping in a dog model of Duchenne muscular dystrophy. Methods Mol Biol 709:299–312. doi: 10.1007/978-1-61737-982-6_20 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Flanigan KM, Voit T, Rosales XQ, Servais L, Kraus JE, Wardell C, Morgan A, Dorricott S, Nakielny J, Quarcoo N, Liefaard L, Drury T, Campion G, Wright P (2014) Pharmacokinetics and safety of single doses of drisapersen in non-ambulant subjects with Duchenne muscular dystrophy: results of a double-blind randomized clinical trial. Neuromuscul Disord 24(1):16–24. doi: 10.1016/j.nmd.2013.09.004 CrossRefPubMedGoogle Scholar
  51. 51.
    Voit T, Topaloglu H, Straub V, Muntoni F, Deconinck N, Campion G, De Kimpe SJ, Eagle M, Guglieri M, Hood S, Liefaard L, Lourbakos A, Morgan A, Nakielny J, Quarcoo N, Ricotti V, Rolfe K, Servais L, Wardell C, Wilson R, Wright P, Kraus JE (2014) Safety and efficacy of drisapersen for the treatment of Duchenne muscular dystrophy (DEMAND II): an exploratory, randomised, placebo-controlled phase 2 study. Lancet Neurol 13(10):987–996. doi: 10.1016/S1474-4422(14)70195-4 CrossRefPubMedGoogle Scholar
  52. 52.
    Mendell JR, Rodino-Klapac LR, Sahenk Z, Roush K, Bird L, Lowes LP, Alfano L, Gomez AM, Lewis S, Kota J, Malik V, Shontz K, Walker CM, Flanigan KM, Corridore M, Kean JR, Allen HD, Shilling C, Melia KR, Sazani P, Saoud JB, Kaye EM, Eteplirsen Study G (2013) Eteplirsen for the treatment of Duchenne muscular dystrophy. Ann Neurol 74(5):637–647. doi: 10.1002/ana.23982 CrossRefPubMedGoogle Scholar
  53. 53.
    Harding PL, Fall AM, Honeyman K, Fletcher S, Wilton SD (2007) The influence of antisense oligonucleotide length on dystrophin exon skipping. Mol Ther 15(1):157–166. doi: 10.1038/sj.mt.6300006 CrossRefPubMedGoogle Scholar
  54. 54.
    Chan CY, Carmack CS, Long DD, Maliyekkel A, Shao Y, Roninson IB, Ding Y (2009) A structural interpretation of the effect of GC-content on efficiency of RNA interference. BMC Bioinformatics 10(Suppl 1):S33. doi: 10.1186/1471-2105-10-S1-S33 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Aoki Y, Yokota T, Nagata T, Nakamura A, Tanihata J, Saito T, Duguez SM, Nagaraju K, Hoffman EP, Partridge T, Takeda S (2012) Bodywide skipping of exons 45-55 in dystrophic mdx52 mice by systemic antisense delivery. Proc Natl Acad Sci U S A 109(34):13763–13768. doi: 10.1073/pnas.1204638109 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kamola PJ, Kitson JD, Turner G, Maratou K, Eriksson S, Panjwani A, Warnock LC, Douillard Guilloux GA, Moores K, Koppe EL, Wixted WE, Wilson PA, Gooderham NJ, Gant TW, Clark KL, Hughes SA, Edbrooke MR, Parry JD (2015) In silico and in vitro evaluation of exonic and intronic off-target effects form a critical element of therapeutic ASO gapmer optimization. Nucleic Acids Res 43(18):8638–8650. doi: 10.1093/nar/gkv857 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Kasuya T, Hori S, Watanabe A, Nakajima M, Gahara Y, Rokushima M, Yanagimoto T, Kugimiya A (2016) Ribonuclease H1-dependent hepatotoxicity caused by locked nucleic acid-modified gapmer antisense oligonucleotides. Sci Rep 6:30377. doi: 10.1038/srep30377 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Tolstrup N, Nielsen PS, Kolberg JG, Frankel AM, Vissing H, Kauppinen S (2003) OligoDesign: optimal design of LNA (locked nucleic acid) oligonucleotide capture probes for gene expression profiling. Nucleic Acids Res 31(13):3758–3762CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Disterer P, Kryczka A, Liu Y, Badi YE, Wong JJ, Owen JS, Khoo B (2014) Development of therapeutic splice-switching oligonucleotides. Hum Gene Ther 25(7):587–598. doi: 10.1089/hum.2013.234 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Kibler-Herzog L, Zon G, Uznanski B, Whittier G, Wilson WD (1991) Duplex stabilities of phosphorothioate, methylphosphonate, and RNA analogs of two DNA 14-mers. Nucleic Acids Res 19(11):2979–2986CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media LLC 2018

Authors and Affiliations

  • Takenori Shimo
    • 1
    • 2
  • Rika Maruyama
    • 1
  • Toshifumi Yokota
    • 1
    • 3
  1. 1.Department of Medical Genetics, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonCanada
  2. 2.Graduate School of Pharmaceutical SciencesOsaka UniversityOsakaJapan
  3. 3.The Friends of Garrett Cumming Research & Muscular Dystrophy Canada, HM Toupin Neurological Science Research ChairEdmontonCanada

Personalised recommendations