Skip to main content

Using Carboxy Fluorescein Succinimidyl Ester (CFSE) to Identify Quiescent Glioblastoma Stem-Like Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1686))

Abstract

Tumor resistance to conventional therapies is a major challenge toward the eradication of cancer, a life-threatening disease. This resistance mainly results from tumor heterogeneity and more specifically from the existence of “stem-like” cells that remain in a quiescent state for long periods of time and thus escape commonly used anti-cancer drugs resulting in treatment failure. Therefore, targeting this subpopulation would present a viable strategy to overcome tumor burden. This daunting task requires a deep and thorough understanding of the biology of the quiescent stem-cell population, their interaction with tumor microenvironments, and mechanisms used to sustain themselves despite aggressive therapies. In this chapter, we describe detailed technical procedures for the isolation of quiescent or infrequently dividing stem-like cells in cultured glioblastoma tumor cells using carboxy fluorescein succinimidyl ester (CFSE) staining and flow cytometric analysis. Quiescent glioblastoma cells with stem-like features are characterized and subsequently isolated based on their ability to retain the CFSE labeling.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Veliz I, Loo Y, Castillo O, Karachaliou N, Nigro O, Rosell R (2015) Advances and challenges in the molecular biology and treatment of glioblastoma-is there any hope for the future? Ann Transl Med 3(1):7. doi:10.3978/j.issn.2305-5839.2014.10.06

    PubMed  PubMed Central  Google Scholar 

  2. Mrugala MM (2013) Advances and challenges in the treatment of glioblastoma: a clinician’s perspective. Discov Med 15(83):221–230

    PubMed  Google Scholar 

  3. Dick JE (2008) Stem cell concepts renew cancer research. Blood 112(13):4793–4807. doi:10.1182/blood-2008-08-077941

    Article  CAS  PubMed  Google Scholar 

  4. Deleyrolle LP, Harding A, Cato K, Siebzehnrubl FA, Rahman M, Azari H, Olson S, Gabrielli B, Osborne G, Vescovi A, Reynolds BA (2011) Evidence for label-retaining tumour-initiating cells in human glioblastoma. Brain 134(Pt 5):1331–1343. doi:10.1093/brain/awr081

    Article  PubMed  PubMed Central  Google Scholar 

  5. Jackson M, Hassiotou F, Nowak A (2015) Glioblastoma stem-like cells: at the root of tumor recurrence and a therapeutic target. Carcinogenesis 36(2):177–185. doi:10.1093/carcin/bgu243

    Article  CAS  PubMed  Google Scholar 

  6. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401. doi:10.1038/nature03128

    Article  CAS  PubMed  Google Scholar 

  7. Son MJ, Woolard K, Nam DH, Lee J, Fine HA (2009) SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell Stem Cell 4(5):440–452. doi:10.1016/j.stem.2009.03.003

    Article  CAS  PubMed  Google Scholar 

  8. Rasper M, Schafer A, Piontek G, Teufel J, Brockhoff G, Ringel F, Heindl S, Zimmer C, Schlegel J (2010) Aldehyde dehydrogenase 1 positive glioblastoma cells show brain tumor stem cell capacity. Neuro Oncol 12(10):1024–1033. doi:10.1093/neuonc/noq070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bleau AM, Hambardzumyan D, Ozawa T, Fomchenko EI, Huse JT, Brennan CW, Holland EC (2009) PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4(3):226–235. doi:10.1016/j.stem.2009.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Krishnamurthy K, Wang G, Rokhfeld D, Bieberich E (2008) Deoxycholate promotes survival of breast cancer cells by reducing the level of pro-apoptotic ceramide. Breast Cancer Res 10(6):R106. doi:10.1186/bcr2211

    Article  PubMed  PubMed Central  Google Scholar 

  11. Roesch A, Fukunaga-Kalabis M, Schmidt EC, Zabierowski SE, Brafford PA, Vultur A, Basu D, Gimotty P, Vogt T, Herlyn M (2010) A temporarily distinct subpopulation of slow-cycling melanoma cells is required for continuous tumor growth. Cell 141(4):583–594. doi:10.1016/j.cell.2010.04.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dembinski JL, Krauss S (2009) Characterization and functional analysis of a slow cycling stem cell-like subpopulation in pancreas adenocarcinoma. Clin Exp Metastasis 26(7):611–623. doi:10.1007/s10585-009-9260-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Graham SM, Jorgensen HG, Allan E, Pearson C, Alcorn MJ, Richmond L, Holyoake TL (2002) Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 99(1):319–325

    Article  CAS  PubMed  Google Scholar 

  14. Lyons AB (2000) Analysing cell division in vivo and in vitro using flow cytometric measurement of CFSE dye dilution. J Immunol Methods 243(1–2):147–154

    Article  CAS  PubMed  Google Scholar 

  15. Deleyrolle LP, Rohaus MR, Fortin JM, Reynolds BA, Azari H (2012) Identification and isolation of slow-dividing cells in human glioblastoma using carboxy fluorescein succinimidyl ester (CFSE). J Vis Exp 62. doi:10.3791/3918

  16. Azari H, Millette S, Ansari S, Rahman M, Deleyrolle LP, Reynolds BA (2011) Isolation and expansion of human glioblastoma multiforme tumor cells using the neurosphere assay. J Vis Exp 56:e3633. doi:10.3791/3633

    Google Scholar 

  17. Rahman M, Reyner K, Deleyrolle L, Millette S, Azari H, Day BW, Stringer BW, Boyd AW, Johns TG, Blot V, Duggal R, Reynolds BA (2015) Neurosphere and adherent culture conditions are equivalent for malignant glioma stem cell lines. Anat Cell Biol 48(1):25–35. doi:10.5115/acb.2015.48.1.25

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Florida Center for Brain Tumor Research, the Preston A. Wells Jr. Center for Brain Tumor Therapy, the National Institutes of Health and the American Cancer Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Azari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Azari, H., Deleyrolle, L.P., Reynolds, B.A. (2018). Using Carboxy Fluorescein Succinimidyl Ester (CFSE) to Identify Quiescent Glioblastoma Stem-Like Cells. In: Lacorazza, H. (eds) Cellular Quiescence. Methods in Molecular Biology, vol 1686. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7371-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7371-2_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7370-5

  • Online ISBN: 978-1-4939-7371-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics