Skip to main content

Study Quiescence Heterogeneity by Coupling Single-Cell Measurements and Computer Modeling

  • Protocol
  • First Online:
Cellular Quiescence

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1686))

  • 3835 Accesses

Abstract

Single-cell measurements combined with mathematical modeling and computer simulations are powerful tools for understanding and exploring dynamical behaviors of gene networks and cellular functions that they control. Here, we describe experimental and computational methods to study cellular quiescence and its heterogeneity at the single-cell level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coller HA, Sang L, Roberts JM (2006) A new description of cellular quiescence. PLoS Biol 4(3):e83. doi:10.1371/journal.pbio.0040083

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yao G (2014) Modelling mammalian cellular quiescence. Interface Focus 4:20130074

    Article  PubMed  PubMed Central  Google Scholar 

  3. Augenlicht LH, Baserga R (1974) Changes in the G0 state of WI-38 fibroblasts at different times after confluence. Exp Cell Res 89(2):255–262

    Article  CAS  PubMed  Google Scholar 

  4. Owen TA, Soprano DR, Soprano KJ (1989) Analysis of the growth factor requirements for stimulation of WI-38 cells after extended periods of density-dependent growth arrest. J Cell Physiol 139(2):424–431. doi:10.1002/jcp.1041390227

    Article  CAS  PubMed  Google Scholar 

  5. Yanez I, O'Farrell M (1989) Variation in the length of the lag phase following serum restimulation of mouse 3T3 cells. Cell Biol Int Rep 13(5):453–462

    Article  CAS  PubMed  Google Scholar 

  6. Rodgers JT, King KY, Brett JO, Cromie MJ, Charville GW, Maguire KK, Brunson C, Mastey N, Liu L, Tsai CR, Goodell MA, Rando TA (2014) mTORC1 controls the adaptive transition of quiescent stem cells from G0 to G(alert). Nature 510(7505):393–396. doi:10.1038/nature13255. nature13255 [pii]

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Llorens-Bobadilla E, Zhao S, Baser A, Saiz-Castro G, Zwadlo K, Martin-Villalba A (2015) Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell 17(3):329–340. doi:10.1016/j.stem.2015.07.002. S1934-5909(15)00301-X [pii]

    Article  CAS  PubMed  Google Scholar 

  8. Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70

    Article  CAS  PubMed  Google Scholar 

  9. Yao G, Lee TJ, Mori S, Nevins JR, You L (2008) A bistable Rb-E2F switch underlies the restriction point. Nat Cell Biol 10(4):476–482

    Article  CAS  PubMed  Google Scholar 

  10. Dong P, Maddali MV, Srimani JK, Thelot F, Nevins JR, Mathey-Prevot B, You L (2014) Division of labour between Myc and G1 cyclins in cell cycle commitment and pace control. Nat Commun 5:4750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Stewart-Ornstein J, Lahav G (2016) Dynamics of CDKN1A in single cells defined by an endogenous fluorescent tagging toolkit. Cell Rep 14(7):1800–1811. doi:10.1016/j.celrep.2016.01.045. S2211-1247(16)30023-7 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wong JV, Yao G, Nevins JR, You L (2011) Viral-mediated noisy gene expression reveals biphasic E2f1 response to MYC. Mol Cell 41(3):275–285. doi:10.1016/j.molcel.2011.01.014. S1097-2765(11)00041-4 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wong JV, Yao G, Nevins JR, You LC (2011) Using noisy gene expression mediated by engineered adenovirus to probe signaling dynamics in mammalian cells. Methods Enzymol 497:221–237. doi:10.1016/B978-0-12-385075-1.00010-X

    Article  CAS  PubMed  Google Scholar 

  14. Yao G, Tan C, West M, Nevins JR, You L (2011) Origin of bistability underlying mammalian cell cycle entry. Mol Syst Biol 7:485. doi:10.1038/msb.2011.19. msb201119 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  15. Tyson JJ, Baumann WT, Chen C, Verdugo A, Tavassoly I, Wang Y, Weiner LM, Clarke R (2011) Dynamic modelling of oestrogen signalling and cell fate in breast cancer cells. Nat Rev Cancer 11(7):523–532. doi:10.1038/nrc3081. nrc3081 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aguda BD, Tang Y (1999) The kinetic origins of the restriction point in the mammalian cell cycle. Cell Prolif 32(5):321–335

    Article  CAS  PubMed  Google Scholar 

  17. Novak B, Tyson JJ (2004) A model for restriction point control of the mammalian cell cycle. J Theor Biol 230(4):563–579

    Article  CAS  PubMed  Google Scholar 

  18. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASI–a COmplex PAthway SImulator. Bioinformatics 22(24):3067–3074. doi:10.1093/bioinformatics/btl485. btl485 [pii]

    Article  CAS  PubMed  Google Scholar 

  19. McAdams HH, Arkin A (1997) Stochastic mechanisms in gene expression. Proc Natl Acad Sci U S A 94(3):814–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hasty J, Pradines J, Dolnik M, Collins JJ (2000) Noise-based switches and amplifiers for gene expression. Proc Natl Acad Sci USA 97(5):2075–2080. doi:10.1073/pnas.040411297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Logan J, Nicolas JC, Topp WC, Girard M, Shenk T, Levine AJ (1981) Transformation by adenovirus early region 2A temperature-sensitive mutants and their revertants. Virology 115(2):419–422

    Article  CAS  PubMed  Google Scholar 

  22. Lee T, Yao G, Bennett DC, Nevins JR, You L (2010) Stochastic E2F activation and reconciliation of phenomenological cell-cycle models. PLoS Biol 8(9):e1000488. doi:10.1371/journal.pbio.1000488

    Article  PubMed  PubMed Central  Google Scholar 

  23. Srimani JK, Yao G, Neu J, Tanouchi Y, Lee TJ, You L (2014) Linear population allocation by bistable switches in response to transient stimulation. PLoS One 9(8):e105408. doi:10.1371/journal.pone.0105408. PONE-D-14-22009 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  24. Szymczak AL, Workman CJ, Wang Y, Vignali KM, Dilioglou S, Vanin EF, Vignali DA (2004) Correction of multi-gene deficiency in vivo using a single 'self-cleaving' 2A peptide-based retroviral vector. Nat Biotechnol 22(5):589–594. doi:10.1038/nbt957

    Article  CAS  PubMed  Google Scholar 

  25. Gillespie DT (2000) The chemical Langevin equation. J Chem Phys 113(1):297–306. doi:10.1063/1.481811

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by grants from the NSF (DMS-1463137 and DMS-1418172, to G.Y.), NIH (GM-084905, a T32 fellowship to J.S.K) and the NSF of China and Anhui Province (Grant No. 31500676 and 1508085SQC202, to X.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Kwon, J.S., Wang, X., Yao, G. (2018). Study Quiescence Heterogeneity by Coupling Single-Cell Measurements and Computer Modeling. In: Lacorazza, H. (eds) Cellular Quiescence. Methods in Molecular Biology, vol 1686. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7371-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7371-2_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7370-5

  • Online ISBN: 978-1-4939-7371-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics