Skip to main content

An In Vitro Model of Cellular Quiescence in Primary Human Dermal Fibroblasts

  • Protocol
  • First Online:
Cellular Quiescence

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1686))

Abstract

Cellular quiescence is a reversible mode of cell cycle exit that allows cells and organisms to withstand unfavorable stress conditions. The factors that underlie the entry, exit, and maintenance of the quiescent state are crucial for understanding normal tissue development and function as well as pathological conditions such as chronic wound healing and cancer. In vitro models of quiescence have been used to understand the factors that contribute to quiescence under well-controlled experimental conditions. Here, we describe an in vitro model of quiescence that is based on neonatal human dermal fibroblasts. The fibroblasts are induced into quiescence by antiproliferative signals, contact inhibition, and serum-starvation (mitogen withdrawal). We describe the isolation of fibroblasts from skin, methods for inducing quiescence in isolated fibroblasts, and approaches to manipulate the fibroblasts in proliferating and quiescent states to determine critical regulators of quiescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Coller HA (2011) Cell biology. The essence of quiescence. Science 334(6059):1074–1075. doi:10.1126/science.1216242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Daignan-Fornier B, Sagot I (2011) Proliferation/quiescence: When to start? Where to stop? What to stock? Cell Div 6(1):20. doi:10.1186/1747-1028-6-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cheung TH, Rando TA (2013) Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol 14(6):329–340. doi:10.1038/nrm3591

    Article  CAS  PubMed  Google Scholar 

  4. Pardee AB (1974) A restriction point for control of normal animal cell proliferation. Proc Natl Acad Sci U S A 71(4):1286–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Darby IA, Hewitson TD (2007) Fibroblast differentiation in wound healing and fibrosis. Int Rev Cytol 257:143–179. doi:10.1016/S0074-7696(07)57004-X

    Article  CAS  PubMed  Google Scholar 

  6. Bainbridge P (2013) Wound healing and the role of fibroblasts. J Wound Care 22(8):407–408. 410–412. doi:10.12968/jowc.2013.22.8.407

    Article  CAS  PubMed  Google Scholar 

  7. Lemons JM, Feng XJ, Bennett BD, Legesse-Miller A, Johnson EL, Raitman I, Pollina EA, Rabitz HA, Rabinowitz JD, Coller HA (2010) Quiescent fibroblasts exhibit high metabolic activity. PLoS Biol 8(10):e1000514. doi:10.1371/journal.pbio.1000514

    Article  PubMed  PubMed Central  Google Scholar 

  8. Evertts AG, Manning AL, Wang X, Dyson NJ, Garcia BA, Coller HA (2013) H4K20 methylation regulates quiescence and chromatin compaction. Mol Biol Cell 24(19):3025–3037. doi:10.1091/mbc.E12-07-0529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Polioudakis D, Bhinge AA, Killion PJ, Lee BK, Abell NS, Iyer VR (2013) A Myc-microRNA network promotes exit from quiescence by suppressing the interferon response and cell-cycle arrest genes. Nucleic Acids Res 41(4):2239–2254. doi:10.1093/nar/gks1452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Spencer SL, Cappell SD, Tsai FC, Overton KW, Wang CL, Meyer T (2013) The proliferation-quiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit. Cell 155(2):369–383. doi:10.1016/j.cell.2013.08.062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nakamura-Ishizu A, Takizawa H, Suda T (2014) The analysis, roles and regulation of quiescence in hematopoietic stem cells. Development 141(24):4656–4666. doi:10.1242/dev.106575

    Article  CAS  PubMed  Google Scholar 

  12. Wang L, Siegenthaler JA, Dowell RD, Yi R (2016) Foxc1 reinforces quiescence in self-renewing hair follicle stem cells. Science 351(6273):613–617. doi:10.1126/science.aad5440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yusuf I, Fruman DA (2003) Regulation of quiescence in lymphocytes. Trends Immunol 24(7):380–386

    Article  CAS  PubMed  Google Scholar 

  14. Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E (2004) Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell 118(5):635–648. doi:10.1016/j.cell.2004.08.012

    Article  CAS  PubMed  Google Scholar 

  15. Coller HA, Sang L, Roberts JM (2006) A new description of cellular quiescence. PLoS Biol 4(3):e83

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fukada S, Uezumi A, Ikemoto M, Masuda S, Segawa M, Tanimura N, Yamamoto H, Miyagoe-Suzuki Y, Takeda S (2007) Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells 25(10):2448–2459. doi:10.1634/stemcells.2007-0019

    Article  CAS  PubMed  Google Scholar 

  17. Forsberg EC, Passegue E, Prohaska SS, Wagers AJ, Koeva M, Stuart JM, Weissman IL (2010) Molecular signatures of quiescent, mobilized and leukemia-initiating hematopoietic stem cells. PLoS One 5(1):e8785. doi:10.1371/journal.pone.0008785

    Article  PubMed  PubMed Central  Google Scholar 

  18. Elkon R, Drost J, van Haaften G, Jenal M, Schrier M, Oude Vrielink JA, Agami R (2012) E2F mediates enhanced alternative polyadenylation in proliferation. Genome Biol 13(7):R59. doi:10.1186/gb-2012-13-7-r59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Suh EJ, Remillard MY, Legesse-Miller A, Johnson EL, Lemons JM, Chapman TR, Forman JJ, Kojima M, Silberman ES, Coller HA (2012) A microRNA network regulates proliferative timing and extracellular matrix synthesis during cellular quiescence in fibroblasts. Genome Biol 13(12):R121. doi:10.1186/gb-2012-13-12-r121

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hochegger H, Takeda S, Hunt T (2008) Cyclin-dependent kinases and cell-cycle transitions: does one fit all? Nat Rev Mol Cell Biol 9(11):910–916. doi:10.1038/nrm2510

    Article  CAS  PubMed  Google Scholar 

  21. Lim S, Kaldis P (2013) Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 140(15):3079–3093. doi:10.1242/dev.091744

    Article  CAS  PubMed  Google Scholar 

  22. Malumbres M (2014) Cyclin-dependent kinases. Genome Biol 15(6):122

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512

    Article  CAS  PubMed  Google Scholar 

  24. Coats S, Flanagan WM, Nourse J, Roberts JM (1996) Requirement of p27Kip1 for restriction point control of the fibroblast cell cycle. Science 272(5263):877–880

    Article  CAS  PubMed  Google Scholar 

  25. Giacinti C, Giordano A (2006) RB and cell cycle progression. Oncogene 25(38):5220–5227. doi:10.1038/sj.onc.1209615

    Article  CAS  PubMed  Google Scholar 

  26. Trimarchi JM, Lees JA (2002) Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol 3(1):11–20. doi:10.1038/nrm714

    Article  CAS  PubMed  Google Scholar 

  27. Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81(3):323–330

    Article  CAS  PubMed  Google Scholar 

  28. Smith EJ, Leone G, DeGregori J, Jakoi L, Nevins JR (1996) The accumulation of an E2F-p130 transcriptional repressor distinguishes a G0 cell state from a G1 cell state. Mol Cell Biol 16(12):6965–6976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Guo J, Longshore S, Nair R, Warner BW (2009) Retinoblastoma protein (pRb), but not p107 or p130, is required for maintenance of enterocyte quiescence and differentiation in small intestine. J Biol Chem 284(1):134–140. doi:10.1074/jbc.M806133200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. El-Sagheer AH, Brown T (2010) Click chemistry with DNA. Chem Soc Rev 39(4):1388–1405. doi:10.1039/b901971p

    Article  CAS  PubMed  Google Scholar 

  31. Salic A, Mitchison TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci U S A 105(7):2415–2420. doi:10.1073/pnas.0712168105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Johnson EL, Suh EJ, Chapman TR, Coller HA (2012) Identifying Functional miRNA Targets Using Overexpression and Knockdown Methods. In: Mallick B, Ghosh Z (eds) Regulatory RNAs: basics, methods and applications. Springer, Berlin, Heidelberg, pp 295–317. doi:10.1007/978-3-642-22517-8_12

    Chapter  Google Scholar 

  33. Gothot A, Pyatt R, McMahel J, Rice S, Srour EF (1997) Functional heterogeneity of human CD34(+) cells isolated in subcompartments of the G0 /G1 phase of the cell cycle. Blood 90(11):4384–4393

    CAS  PubMed  Google Scholar 

  34. Passegue E, Wagers AJ, Giuriato S, Anderson WC, Weissman IL (2005) Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J Exp Med 202(11):1599–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bickenbach JR (1981) Identification and behavior of label-retaining cells in oral mucosa and skin. J Dent Res 60. Spec No C:1611–1620

    Google Scholar 

  36. Morris RJ, Fischer SM, Slaga TJ (1985) Evidence that the centrally and peripherally located cells in the murine epidermal proliferative unit are two distinct cell populations. J Invest Dermatol 84(4):277–281

    Article  CAS  PubMed  Google Scholar 

  37. Cotsarelis G, Sun TT, Lavker RM (1990) Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61(7):1329–1337

    Article  CAS  PubMed  Google Scholar 

  38. Cheshier SH, Morrison SJ, Liao X, Weissman IL (1999) In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc Natl Acad Sci U S A 96(6):3120–3125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kiel MJ, He S, Ashkenazi R, Gentry SN, Teta M, Kushner JA, Jackson TL, Morrison SJ (2007) Haematopoietic stem cells do not asymmetrically segregate chromosomes or retain BrdU. Nature 449(7159):238–242. doi:10.1038/nature06115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wilson A, Laurenti E, Oser G, van der Wath RC, Blanco-Bose W, Jaworski M, Offner S, Dunant CF, Eshkind L, Bockamp E, Lio P, Macdonald HR, Trumpp A (2008) Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell 135(6):1118–1129. doi:10.1016/j.cell.2008.10.048

    Article  CAS  PubMed  Google Scholar 

  41. Tumbar T, Guasch G, Greco V, Blanpain C, Lowry WE, Rendl M, Fuchs E (2004) Defining the epithelial stem cell niche in skin. Science 303(5656):359–363. doi:10.1126/science.1092436

    Article  CAS  PubMed  Google Scholar 

  42. Foudi A, Hochedlinger K, Van Buren D, Schindler JW, Jaenisch R, Carey V, Hock H (2009) Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells. Nat Biotechnol 27(1):84–90. doi:10.1038/nbt.1517

    Article  CAS  PubMed  Google Scholar 

  43. Sakaue-Sawano A, Kurokawa H, Morimura T, Hanyu A, Hama H, Osawa H, Kashiwagi S, Fukami K, Miyata T, Miyoshi H, Imamura T, Ogawa M, Masai H, Miyawaki A (2008) Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132(3):487–498. doi:10.1016/j.cell.2007.12.033

    Article  CAS  PubMed  Google Scholar 

  44. Sakaue-Sawano A, Ohtawa K, Hama H, Kawano M, Ogawa M, Miyawaki A (2008) Tracing the silhouette of individual cells in S/G2/M phases with fluorescence. Chem Biol 15(12):1243–1248. doi:10.1016/j.chembiol.2008.10.015

    Article  CAS  PubMed  Google Scholar 

  45. Sakaue-Sawano A, Hoshida T, Yo M, Takahashi R, Ohtawa K, Arai T, Takahashi E, Noda S, Miyoshi H, Miyawaki A (2013) Visualizing developmentally programmed endoreplication in mammals using ubiquitin oscillators. Development 140(22):4624–4632. doi:10.1242/dev.099226

    Article  CAS  PubMed  Google Scholar 

  46. Bouldin CM, Kimelman D (2014) Dual fucci: a new transgenic line for studying the cell cycle from embryos to adults. Zebrafish 11(2):182–183. doi:10.1089/zeb.2014.0986

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zielke N, Edgar BA (2015) FUCCI sensors: powerful new tools for analysis of cell proliferation. Wiley Interdiscip Rev Dev Biol 4(5):469–487. doi:10.1002/wdev.189

    Article  CAS  PubMed  Google Scholar 

  48. Oki T, Nishimura K, Kitaura J, Togami K, Maehara A, Izawa K, Sakaue-Sawano A, Niida A, Miyano S, Aburatani H, Kiyonari H, Miyawaki A, Kitamura T (2014) A novel cell-cycle-indicator, mVenus-p27K-, identifies quiescent cells and visualizes G0-G1 transition. Sci Rep 4:4012. doi:10.1038/srep04012

    Article  PubMed  PubMed Central  Google Scholar 

  49. Carrano AC, Eytan E, Hershko A, Pagano M (1999) SKP2 is required for ubiquitin-mediated degradation of the CDK inhibitor p27. Nat Cell Biol 1(4):193–199

    Article  CAS  PubMed  Google Scholar 

  50. Kamura T, Hara T, Matsumoto M, Ishida N, Okumura F, Hatakeyama S, Yoshida M, Nakayama K, Nakayama KI (2004) Cytoplasmic ubiquitin ligase KPC regulates proteolysis of p27(Kip1) at G1 phase. Nat Cell Biol 6(12):1229–1235. doi:10.1038/ncb1194

    Article  CAS  PubMed  Google Scholar 

  51. Vonlaufen A, Phillips PA, Yang L, Xu Z, Fiala-Beer E, Zhang X, Pirola RC, Wilson JS, Apte MV (2010) Isolation of quiescent human pancreatic stellate cells: a promising in vitro tool for studies of human pancreatic stellate cell biology. Pancreatology 10(4):434–443. doi:10.1159/000260900

    Article  PubMed  Google Scholar 

  52. Vag T, Schramm T, Kaiser WA, Hilger I (2009) Proliferating and quiescent human umbilical vein endothelial cells (HUVECs): a potential in vitro model to evaluate contrast agents for molecular imaging of angiogenesis. Contrast Media Mol Imaging 4(4):192–198. doi:10.1002/cmmi.280

    Article  CAS  PubMed  Google Scholar 

  53. Sellathurai J, Cheedipudi S, Dhawan J, Schroder HD (2013) A novel in vitro model for studying quiescence and activation of primary isolated human myoblasts. PLoS One 8(5):e64067. doi:10.1371/journal.pone.0064067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Alberts B et al (2002) Fibroblasts and their transformations: the connective-tissue cell family. In: Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (eds) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  55. Nishiyama T, Akutsu N, Horii I, Nakayama Y, Ozawa T, Hayashi T (1991) Response to growth factors of human dermal fibroblasts in a quiescent state owing to cell-matrix contact inhibition. Matrix 11(2):71–75

    Article  CAS  PubMed  Google Scholar 

  56. Bridger JM, Boyle S, Kill IR, Bickmore WA (2000) Re-modelling of nuclear architecture in quiescent and senescent human fibroblasts. Curr Biol 10(3):149–152

    Article  CAS  PubMed  Google Scholar 

  57. Boraldi F, Annovi G, Paolinelli-Devincenzi C, Tiozzo R, Quaglino D (2008) The effect of serum withdrawal on the protein profile of quiescent human dermal fibroblasts in primary cell culture. Proteomics 8(1):66–82. doi:10.1002/pmic.200700833

    Article  CAS  PubMed  Google Scholar 

  58. Takashima A (2001) Establishment of fibroblast cultures. Curr Protoc Cell Biol Chapter 2:Unit 2 1. doi:10.1002/0471143030.cb0201s00

  59. Rittie L, Fisher GJ (2005) Isolation and culture of skin fibroblasts. Methods Mol Med 117:83–98. doi:10.1385/1-59259-940-0:083

    CAS  PubMed  Google Scholar 

  60. Villegas J, McPhaul M (2005) Establishment and culture of human skin fibroblasts. Curr Protoc Mol Biol Chapter 28:Unit 28 23. doi:10.1002/0471142727.mb2803s71

  61. Huschtscha LI, Napier CE, Noble JR, Bower K, Au AY, Campbell HG, Braithwaite AW, Reddel RR (2012) Enhanced isolation of fibroblasts from human skin explants. BioTechniques 53(4):239–244. doi:10.2144/0000113939

    Article  CAS  PubMed  Google Scholar 

  62. Louis KS, Siegel AC (2011) Cell viability analysis using trypan blue: manual and automated methods. Methods Mol Biol 740:7–12. doi:10.1007/978-1-61779-108-6_2

    Article  CAS  PubMed  Google Scholar 

  63. Ji H (2010) Lysis of cultured cells for immunoprecipitation. Cold Spring Harb Protoc 2010(8):pdb prot5466. doi:10.1101/pdb.prot5466

    Article  PubMed  Google Scholar 

  64. Dorsett Y, Tuschl T (2004) siRNAs: applications in functional genomics and potential as therapeutics. Nat Rev Drug Discov 3(4):318–329. doi:10.1038/nrd1345

    Article  CAS  PubMed  Google Scholar 

  65. Wittrup A, Lieberman J (2015) Knocking down disease: a progress report on siRNA therapeutics. Nat Rev Genet 16(9):543–552. doi:10.1038/nrg3978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Bryant P, Zheng Q, Pumiglia K (2006) Focal adhesion kinase controls cellular levels of p27/Kip1 and p21/Cip1 through Skp2-dependent and -independent mechanisms. Mol Cell Biol 26(11):4201–4213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Perucca P, Cazzalini O, Madine M, Savio M, Laskey RA, Vannini V, Prosperi E, Stivala LA (2009) Loss of p21 CDKN1A impairs entry to quiescence and activates a DNA damage response in normal fibroblasts induced to quiescence. Cell Cycle 8(1):105–114

    Article  CAS  PubMed  Google Scholar 

  68. Ezhevsky SA, Ho A, Becker-Hapak M, Davis PK, Dowdy SF (2001) Differential regulation of retinoblastoma tumor suppressor protein by G(1) cyclin-dependent kinase complexes in vivo. Mol Cell Biol 21(14):4773–4784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hur J, Choi JI, Lee H, Nham P, Kim TW, Chae CW, Yun JY, Kang JA, Kang J, Lee SE, Yoon CH, Boo K, Ham S, Roh TY, Jun JK, Lee H, Baek SH, Kim HS (2016) CD82/KAI1 Maintains the dormancy of long-term hematopoietic stem cells through interaction with DARC-expressing macrophages. Cell Stem Cell 18(4):508–521

    Article  CAS  PubMed  Google Scholar 

  70. Liu Y, Elf SE, Asai T, Miyata Y, Liu Y, Sashida G, Huang G, Di Giandomenico S, Koff A, Nimer SD (2009) The p53 tumor suppressor protein is a critical regulator of hematopoietic stem cell behavior. Cell Cycle 8(19):3120–3124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dey-Guha I, Wolfer A, Yeh AC, G Albeck J, Darp R, Leon E, Wulfkuhle J, Petricoin EF III, Wittner BS, Ramaswamy S (2011) Asymmetric cancer cell division regulated by AKT. Proc Natl Acad Sci U S A 108(31):12845–12850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lyublinskaya OG, Borisov YG, Pugovkina NA, Smirnova IS, Obidina JV, Ivanova JS, Zenin VV, Shatrova AN, Borodkina AV, Aksenov ND, Zemelko VI, Burova EB, Puzanov MV, Nikolsky NN (2015) Reactive oxygen species are required for human mesenchymal stem cells to initiate proliferation after the quiescence exit. Oxid Med Cell Longev 2015:502105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Key G, Becker MH, Baron B, Duchrow M, Schluter C, Flad HD, Gerdes J (1993) New Ki-67-equivalent murine monoclonal antibodies (MIB 1-3) generated against bacterially expressed parts of the Ki-67 cDNA containing three 62 base pair repetitive elements encoding for the Ki-67 epitope. Lab Invest 68(6):629–636

    CAS  PubMed  Google Scholar 

  74. Osada S, Minematsu N, Oda F, Akimoto K, Kawana S, Ohno S (2015) Atypical protein kinase C isoform, aPKClambda, is essential for maintaining hair follicle stem cell quiescence. J Invest Dermatol 135(11):2584–2592

    Article  CAS  PubMed  Google Scholar 

  75. Reed SA, Ouellette SE, Liu X, Allen RE, Johnson SE (2007) E2F5 and LEK1 translocation to the nucleus is an early event demarcating myoblast quiescence. J Cell Biochem 101(6):1394–1408

    Article  CAS  PubMed  Google Scholar 

  76. Wang HC, Fecteau KA (2000) Detection of a novel quiescence-dependent protein kinase. J Biol Chem 275(33):25850–25857

    Article  CAS  PubMed  Google Scholar 

  77. Blanpain C, Simons BD (2013) Unravelling stem cell dynamics by lineage tracing. Nat Rev Mol Cell Biol 14(8):489–502

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

H.A.C. was the Milton E. Cassel scholar of the Rita Allen Foundation. This work was funded by grants to H.A.C. from National Institute of General Medical Sciences R01 GM081686, and National Institute of General Medical Sciences R01 GM0866465. H.A.C. acknowledges a Leukemia Lymphoma Society New Idea Award, the Iris Cantor Women’s Health Center/UCLA CTSI NIH Grant UL1TR000124, Innovation Awards from the Broad Stem Cell Research Center, and a Career Development Award from the UCLA SPORE in Prostate Cancer. Research reported in this publication was supported by the National Cancer Institute of the National Institutes of Health under Award Number P50CA092131. L.D.H. acknowledges the CARE Fellows and Scholars Program. H.A.C. is a member of the Eli & Edythe Broad Center of Regenerative Medicine & Stem Cell Research, the Jonsson Comprehensive Cancer Center, the UCLA Molecular Biology Institute, and the UCLA Bioinformatics Interdepartmental Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilary A. Coller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Mitra, M., Ho, L.D., Coller, H.A. (2018). An In Vitro Model of Cellular Quiescence in Primary Human Dermal Fibroblasts. In: Lacorazza, H. (eds) Cellular Quiescence. Methods in Molecular Biology, vol 1686. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7371-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7371-2_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7370-5

  • Online ISBN: 978-1-4939-7371-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics