Skip to main content

Genome-Wide Identification of Transcription Factor-Binding Sites in Quiescent Adult Neural Stem Cells

  • Protocol
  • First Online:
Cellular Quiescence

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1686))

Abstract

Transcription factors bind to specific DNA sequences and control the transcription rate of nearby genes in the genome. This activation or repression of gene expression is further potentiated by epigenetic modifications of histones with active and silent marks, respectively. Resident adult stem cells in the hematopoietic system, skin, and brain exist in a non-proliferative quiescent resting state. When quiescent stem cells become activated and transition to dividing progenitors and distinct cell types, they can replenish and repair tissue. Thus, determination of the position of transcription factor binding and histone epigenetic modification on the chromatin is an essential step toward understanding the gene regulation of quiescent and proliferative adult stem cells for potential applications in regenerative medicine. Genome-wide transcription factor occupancy and histone modifications on the genome can be obtained by assessing DNA-protein interaction through next-generation chromatin immunoprecipitation sequencing technology (ChIP-seq). This chapter outlines the protocol to perform, analyze, and validate ChIP-seq experiments that can be used to identify protein-DNA interactions and histone marks on the chromatin. The methods described here are applicable to quiescent and proliferative neural stem cells, and a wide range of other cellular systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rezza A, Sennett R, Rendl M (2014) Adult stem cell niches: cellular and molecular components. Curr Top Dev Biol 107:333–372. doi:10.1016/B978-0-12-416022-4.00012-3

    Article  CAS  PubMed  Google Scholar 

  2. Cheung TH, Rando TA (2013) Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol 14(6):329–340. doi:10.1038/nrm3591

    Article  CAS  PubMed  Google Scholar 

  3. Fukada S, Uezumi A, Ikemoto M, Masuda S, Segawa M, Tanimura N, Yamamoto H, Miyagoe-Suzuki Y, Takeda S (2007) Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells 25(10):2448–2459. doi:10.1634/stemcells.2007-0019

    Article  CAS  PubMed  Google Scholar 

  4. Venezia TA, Merchant AA, Ramos CA, Whitehouse NL, Young AS, Shaw CA, Goodell MA (2004) Molecular signatures of proliferation and quiescence in hematopoietic stem cells. PLoS Biol 2(10):e301. doi:10.1371/journal.pbio.0020301

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hsieh J (2012) Orchestrating transcriptional control of adult neurogenesis. Genes Dev 26(10):1010–1021. doi:10.1101/gad.187336.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ma DK, Marchetto MC, Guo JU, Ming GL, Gage FH, Song H (2010) Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nat Neurosci 13(11):1338–1344. doi:10.1038/nn.2672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blanpain C, Fuchs E (2009) Epidermal homeostasis: a balancing act of stem cells in the skin. Nat Rev Mol Cell Biol 10(3):207–217. doi:10.1038/nrm2636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Martynoga B, Mateo JL, Zhou B, Andersen J, Achimastou A, Urban N, van den Berg D, Georgopoulou D, Hadjur S, Wittbrodt J, Ettwiller L, Piper M, Gronostajski RM, Guillemot F (2013) Epigenomic enhancer annotation reveals a key role for NFIX in neural stem cell quiescence. Genes Dev 27(16):1769–1786. doi:10.1101/gad.216804.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Garner MM, Revzin A (1981) A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res 9(13):3047–3060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mahony S, Pugh BF (2015) Protein-DNA binding in high-resolution. Crit Rev Biochem Mol Biol 50(4):269–283. doi:10.3109/10409238.2015.1051505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Furey TS (2012) ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet 13(12):840–852. doi:10.1038/nrg3306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pchelintsev NA, Adams PD, Nelson DM (2016) Critical parameters for efficient sonication and improved chromatin immunoprecipitation of high molecular weight proteins. PLoS One 11(1):e0148023. doi:10.1371/journal.pone.0148023

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ho JW, Bishop E, Karchenko PV, Negre N, White KP, Park PJ (2011) ChIP-chip versus ChIP-seq: lessons for experimental design and data analysis. BMC Genomics 12:134. doi:10.1186/1471-2164-12-134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hung JH, Weng Z (2016) Mapping short sequence reads to a reference genome. Cold Spring Harb Protoc 2017(2):prot093161. doi:10.1101/pdb.prot093161

    Article  Google Scholar 

  15. Ghosh S, Chan CK (2016) Analysis of RNA-Seq data using TopHat and cufflinks. Methods Mol Biol 1374:339–361. doi:10.1007/978-1-4939-3167-5_18

    Article  CAS  PubMed  Google Scholar 

  16. Droop AP (2016) fqtools: an efficient software suite for modern FASTQ file manipulation. Bioinformatics 32(12):1883–1884. doi:10.1093/bioinformatics/btw088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cock PJ, Fields CJ, Goto N, Heuer ML, Rice PM (2010) The sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res 38(6):1767–1771. doi:10.1093/nar/gkp1137

    Article  CAS  PubMed  Google Scholar 

  18. Blankenberg D, Gordon A, Von Kuster G, Coraor N, Taylor J, Nekrutenko A, Galaxy T (2010) Manipulation of FASTQ data with galaxy. Bioinformatics 26(14):1783–1785. doi:10.1093/bioinformatics/btq281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16):2078–2079. doi:10.1093/bioinformatics/btp352

    Article  PubMed  PubMed Central  Google Scholar 

  20. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38(4):576–589. doi:10.1016/j.molcel.2010.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shen L, Shao N, Liu X, Nestler E (2014) ngs.plot: Quick mining and visualization of next-generation sequencing data by integrating genomic databases. BMC Genomics 15:284. doi:10.1186/1471-2164-15-284

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chen TW, Li HP, Lee CC, Gan RC, Huang PJ, Wu TH, Lee CY, Chang YF, Tang P (2014) ChIPseek, a web-based analysis tool for ChIP data. BMC Genomics 15:539. doi:10.1186/1471-2164-15-539

    Article  PubMed  PubMed Central  Google Scholar 

  23. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515. doi:10.1038/nbt.1621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and cufflinks. Nat Protoc 7(3):562–578. doi:10.1038/nprot.2012.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, Diemer K, Muruganujan A, Narechania A (2003) PANTHER: a library of protein families and subfamilies indexed by function. Genome Res 13(9):2129–2141. doi:10.1101/gr.772403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang B, Kirov S, Snoddy J (2005) WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res 33(Web Server issue):W741–W748. doi:10.1093/nar/gki475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang J, Duncan D, Shi Z, Zhang B (2013) WEB-based GEne SeT analysis toolkit (WebGestalt): update 2013. Nucleic Acids Res 41(Web Server issue):W77–W83. doi:10.1093/nar/gkt439

    Article  PubMed  PubMed Central  Google Scholar 

  28. Huang da W, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44–57. doi:10.1038/nprot.2008.211

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Stephen Johnson, Ralf Kittler, Francois Guillemot, Jane Johnson, Victor Corces, Sean Goetsch, Bradford Casey, Mark Borromeo, Derek Smith, Tulip Nandu, Xin Liu, Caelin Potts, and Benjamin Nelson for helpful advice on the ChIP-seq project. We also thank the UT Southwestern Medical Center next-generation sequencing core facilities (McDermott sequencing core for library preparation of samples, Illumina HiSeq ChIP-sequencing and bioinformatics support. Genomics and Microarray core facility for Bioanalyzer,). Jose Cabrera for graphical support. The ChIP-seq work was supported by US National Institutes of Health grants (R01NS093992, R01NS089770, R01NS081203, and K02AG041815), American Heart Association 15GRNT25750034, Department of Defense W81XWH-15-1-0399, and a grant from the Texas Institute for Brain Injury and Repair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenny Hsieh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Mukherjee, S., Hsieh, J. (2018). Genome-Wide Identification of Transcription Factor-Binding Sites in Quiescent Adult Neural Stem Cells. In: Lacorazza, H. (eds) Cellular Quiescence. Methods in Molecular Biology, vol 1686. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7371-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7371-2_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7370-5

  • Online ISBN: 978-1-4939-7371-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics