Skip to main content

Analysis of MicroRNA-Mediated Translation Activation of In Vitro Transcribed Reporters in Quiescent Cells

  • Protocol
  • First Online:
Cellular Quiescence

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1686))

Abstract

Quiescence (G0) is defined as an assortment of cell cycle arrested states that exhibit distinct properties. Leukemias harbor a subpopulation of G0 cells that can be enriched by growth factor deprivation or serum starvation. Target site reporters with shortened poly(A) tails show translation activation by microRNAs, via a noncanonical mechanism, when introduced into the nucleus of G0 cells. This is because recruitment by the activation causing FXR1a-microRNA-protein complex (FXR1a-microRNP) is nuclear and requires shortened poly(A) tails to avoid repressive factors and canonical translation. When introduced into the cytoplasm, target mRNAs and microRNAs are directed toward repression rather than translation activation. Leukemic cell lines are difficult to transfect but can be routinely nucleofected—where in vitro transcribed mRNA reporters and microRNAs are introduced into the nucleus of G0 leukemic cells. Nucleofection of a microRNA target reporter and either cognate, targeting microRNA, or control microRNA, into the nucleus of G0 cells, enables analysis of translation activation by microRNAs in G0. We discuss a modified protocol that we developed for transfection of mRNAs along with microRNAs to test translation regulation by microRNAs in G0 leukemic cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pardee AB (1974) A restriction point for control of normal animal cell proliferation. Proc Natl Acad Sci U S A 71(4):1286–1290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aragon AD, Rodriguez AL, Meirelles O, Roy S, Davidson GS, Tapia PH, Allen C, Joe R, Benn D, Werner-Washburne M (2008) Characterization of differentiated quiescent and nonquiescent cells in yeast stationary-phase cultures. Mol Biol Cell 19(3):1271–1280. doi:10.1091/mbc.E07-07-0666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Coller HA, Sang L, Roberts JM (2006) A new description of cellular quiescence. PLoS Biol 4(3):e83. doi:10.1371/journal.pbio.0040083

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ng SW, Mitchell A, Kennedy JA, Chen WC, McLeod J, Ibrahimova N, Arruda A, Popescu A, Gupta V, Schimmer AD, Schuh AC, Yee KW, Bullinger L, Herold T, Gorlich D, Buchner T, Hiddemann W, Berdel WE, Wormann B, Cheok M, Preudhomme C, Dombret H, Metzeler K, Buske C, Lowenberg B, Valk PJ, Zandstra PW, Minden MD, Dick JE, Wang JC (2016) A 17-gene stemness score for rapid determination of risk in acute leukaemia. Nature 540(7633):433–437. doi:10.1038/nature20598

    Article  CAS  PubMed  Google Scholar 

  5. Kreso A, Dick JE (2014) Evolution of the cancer stem cell model. Cell Stem Cell 14(3):275–291. doi:10.1016/j.stem.2014.02.006

    Article  CAS  PubMed  Google Scholar 

  6. Meacham CE, Morrison SJ (2013) Tumour heterogeneity and cancer cell plasticity. Nature 501(7467):328–337. doi:10.1038/nature12624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Crews LA, Jamieson CH (2013) Selective elimination of leukemia stem cells: hitting a moving target. Cancer Lett 338(1):15–22. doi:10.1016/j.canlet.2012.08.006

    Article  CAS  PubMed  Google Scholar 

  8. Bhola PD, Mar BG, Lindsley RC, Ryan JA, Hogdal LJ, Vo TT, DeAngelo DJ, Galinsky I, Ebert BL, Letai A (2016) Functionally identifiable apoptosis-insensitive subpopulations determine chemoresistance in acute myeloid leukemia. J Clin Investig 126(10):3827–3836. doi:10.1172/JCI82908

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sang L, Coller HA, Roberts JM (2008) Control of the reversibility of cellular quiescence by the transcriptional repressor HES1. Science 321(5892):1095–1100. doi:10.1126/science.1155998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tavaluc RT, Hart LS, Dicker DT, El-Deiry WS (2007) Effects of low confluency, serum starvation and hypoxia on the side population of cancer cell lines. Cell Cycle 6(20):2554–2562. doi:10.4161/cc.6.20.4911

    Article  CAS  PubMed  Google Scholar 

  11. Gupta PB, Onder TT, Jiang G, Tao K, Kuperwasser C, Weinberg RA, Lander ES (2009) Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138(4):645–659. doi:10.1016/j.cell.2009.06.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lemons JM, Feng XJ, Bennett BD, Legesse-Miller A, Johnson EL, Raitman I, Pollina EA, Rabitz HA, Rabinowitz JD, Coller HA (2010) Quiescent fibroblasts exhibit high metabolic activity. PLoS Biol 8(10):e1000514. doi:10.1371/journal.pbio.1000514

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lindeman GJ, Visvader JE (2010) Insights into the cell of origin in breast cancer and breast cancer stem cells. Asia Pac J Clin Oncol 6(2):89–97. doi:10.1111/j.1743-7563.2010.01279.x

    Article  PubMed  Google Scholar 

  14. Salony SX, Alves CP, Dey-Guha I, Ritsma L, Boukhali M, Lee JH, Chowdhury J, Ross KN, Haas W, Vasudevan S, Ramaswamy S (2016) AKT inhibition promotes nonautonomous cancer cell survival. Molecular cancer therapeutics 15(1):142–153. doi:10.1158/1535-7163.MCT-15-0414

    Article  CAS  PubMed  Google Scholar 

  15. Dey-Guha I, Wolfer A, Yeh AC, GA J, Darp R, Leon E, Wulfkuhle J, Petricoin EF 3rd, Wittner BS, Ramaswamy S (2011) Asymmetric cancer cell division regulated by AKT. Proc Natl Acad Sci U S A 108(31):12,845–12,850. doi:10.1073/pnas.1109632108

    Article  CAS  Google Scholar 

  16. Zheng X, Seshire A, Ruster B, Bug G, Beissert T, Puccetti E, Hoelzer D, Henschler R, Ruthardt M (2007) Arsenic but not all-trans retinoic acid overcomes the aberrant stem cell capacity of PML/RARalpha-positive leukemic stem cells. Haematologica 92(3):323–331

    Article  CAS  PubMed  Google Scholar 

  17. Li L, Bhatia R (2011) Stem cell quiescence. Clin Cancer Res: Off J Am Assoc Cancer Res 17(15):4936–4941. doi:10.1158/1078-0432.CCR-10-1499

    Article  CAS  Google Scholar 

  18. Barnes DJ, Melo JV (2006) Primitive, quiescent and difficult to kill: the role of non-proliferating stem cells in chronic myeloid leukemia. Cell Cycle 5(24):2862–2866. doi:10.4161/cc.5.24.3573

    Article  CAS  PubMed  Google Scholar 

  19. Goldman J, Gordon M (2006) Why do chronic myelogenous leukemia stem cells survive allogeneic stem cell transplantation or imatinib: does it really matter? Leuk Lymphoma 47(1):1–7. doi:10.1080/10428190500407996

    Article  CAS  PubMed  Google Scholar 

  20. Reed JC (1998) Molecular biology of chronic lymphocytic leukemia: implications for therapy. Semin Hematol 35(3 Suppl 3):3–13

    CAS  PubMed  Google Scholar 

  21. Giles FJ, DeAngelo DJ, Baccarani M, Deininger M, Guilhot F, Hughes T, Mauro M, Radich J, Ottmann O, Cortes J (2008) Optimizing outcomes for patients with advanced disease in chronic myelogenous leukemia. Semin Oncol 35(1 Suppl 1):S1–17.; quiz S18–20. doi:10.1053/j.seminoncol.2007.12.002

    Article  CAS  PubMed  Google Scholar 

  22. Krause A, Luciana M, Krause F, Rego EM (2010) Targeting the acute myeloid leukemia stem cells. Anti Cancer Agents Med Chem 10(2):104–110

    Article  Google Scholar 

  23. Besancon R, Valsesia-Wittmann S, Puisieux A, Caron de Fromentel C, Maguer-Satta V (2009) Cancer stem cells: the emerging challenge of drug targeting. Curr Med Chem 16(4):394–416

    Article  CAS  PubMed  Google Scholar 

  24. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  25. Le Tonqueze O, Kollu S, Lee S, Al-Salah M, Truesdell SS, Vasudevan S (2016) Regulation of monocyte induced cell migration by the RNA binding protein, FXR1. Cell Cycle 15(14):1874–1882. doi:10.1080/15384101.2016.1189040

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB (2008) Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320(5883):1643–1647. doi:10.1126/science.1155390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mayr C, Bartel DP (2009) Widespread shortening of 3’UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138(4):673–684. doi:10.1016/j.cell.2009.06.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cheung TH, Rando TA (2013) Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol 14(6):329–340. doi:10.1038/nrm3591

    Article  CAS  PubMed  Google Scholar 

  29. Bukhari SI, Truesdell SS, Lee S, Kollu S, Classon A, Boukhali M, Jain E, Mortensen RD, Yanagiya A, Sadreyev RI, Haas W, Vasudevan S (2016) A Specialized Mechanism of Translation Mediated by FXR1a-Associated MicroRNP in Cellular Quiescence. Mol Cell 61(5):760–773. doi:10.1016/j.molcel.2016.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee S, Truesdell SS, Bukhari SI, Lee JH, LeTonqueze O, Vasudevan S (2014) Upregulation of eIF5B controls cell-cycle arrest and specific developmental stages. Proc Natl Acad Sci U S A 111(41):E4315–E4322. doi:10.1073/pnas.1320477111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Loayza-Puch F, Drost J, Rooijers K, Lopes R, Elkon R, Agami R (2013) p53 induces transcriptional and translational programs to suppress cell proliferation and growth. Genome Biol 14(4):R32. doi:10.1186/gb-2013-14-4-r32

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136(4):731–745. doi:10.1016/j.cell.2009.01.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zoncu R, Efeyan A, Sabatini DM (2011) mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 12(1):21–35. doi:10.1038/nrm3025

    Article  CAS  PubMed  Google Scholar 

  34. Vasudevan S, Tong Y, Steitz JA (2007) Switching from repression to activation: microRNAs can up-regulate translation. Science 318(5858):1931–1934. doi:10.1126/science.1149460

    Article  CAS  PubMed  Google Scholar 

  35. Mortensen RD, Serra M, Steitz JA, Vasudevan S (2011) Posttranscriptional activation of gene expression in Xenopus laevis oocytes by microRNA-protein complexes (microRNPs). Proc Natl Acad Sci U S A 108(20):8281–8286. doi:10.1073/pnas.1105401108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Truesdell SS, Mortensen RD, Seo M, Schroeder JC, Lee JH, LeTonqueze O, Vasudevan S (2012) MicroRNA-mediated mRNA translation activation in quiescent cells and oocytes involves recruitment of a nuclear microRNP. Sci Rep 2:842. doi:10.1038/srep00842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jonas S, Izaurralde E (2015) Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet 16(7):421–433. doi:10.1038/nrg3965

    Article  CAS  PubMed  Google Scholar 

  38. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531. doi:10.1038/nrg1379

    Article  CAS  PubMed  Google Scholar 

  39. Ameres SL, Zamore PD (2013) Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol 14(8):475–488. doi:10.1038/nrm3611

    Article  CAS  PubMed  Google Scholar 

  40. Fabian MR, Sundermeier TR, Sonenberg N (2010) Understanding how miRNAs post-transcriptionally regulate gene expression. Prog Mol Subcell Biol 50:1–20. doi:10.1007/978-3-642-03103-8_1

  41. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. doi:10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bukhari SI, Vasudevan S (2017) FXR1a-associated microRNP: A driver of specialized non-canonical translation in quiescent conditions. RNA Biol 14(2):137–145. doi:10.1080/15476286.2016.1265197

    Article  PubMed  Google Scholar 

  43. Vasudevan S, Steitz JA (2007) AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute 2. Cell 128(6):1105–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dube M, Huot ME, Khandjian EW (2000) Muscle specific fragile X related protein 1 isoforms are sequestered in the nucleus of undifferentiated myoblast. BMC Genet 1:4. doi:10.1186/1471-2156-1-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Siomi MC, Zhang Y, Siomi H, Dreyfuss G (1996) Specific sequences in the fragile X syndrome protein FMR1 and the FXR proteins mediate their binding to 60S ribosomal subunits and the interactions among them. Mol Cell Biol 16(7):3825–3832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dehlin E, Wormington M, Korner CG, Wahle E (2000) Cap-dependent deadenylation of mRNA. EMBO J 19(5):1079–1086. doi:10.1093/emboj/19.5.1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Korner CG, Wormington M, Muckenthaler M, Schneider S, Dehlin E, Wahle E (1998) The deadenylating nuclease (DAN) is involved in poly(A) tail removal during the meiotic maturation of Xenopus oocytes. EMBO J 17(18):5427–5437. doi:10.1093/emboj/17.18.5427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Levy-Strumpf N, Deiss LP, Berissi H, Kimchi A (1997) DAP-5, a novel homolog of eukaryotic translation initiation factor 4G isolated as a putative modulator of gamma interferon-induced programmed cell death. Mol Cell Biol 17(3):1615–1625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gradi A, Imataka H, Svitkin YV, Rom E, Raught B, Morino S, Sonenberg N (1998) A novel functional human eukaryotic translation initiation factor 4G. Mol Cell Biol 18(1):334–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yamanaka S, Zhang XY, Maeda M, Miura K, Wang S, Farese RV Jr, Iwao H, Innerarity TL (2000) Essential role of NAT1/p97/DAP5 in embryonic differentiation and the retinoic acid pathway. EMBO J 19(20):5533–5541. doi:10.1093/emboj/19.20.5533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sugiyama H, Takahashi K, Yamamoto T, Iwasaki M, Narita M, Nakamura M, Rand TA, Nakagawa M, Watanabe A, Yamanaka S (2017) Nat1 promotes translation of specific proteins that induce differentiation of mouse embryonic stem cells. Proc Natl Acad Sci U S A 114(2):340–345. doi:10.1073/pnas.1617234114

    Article  CAS  PubMed  Google Scholar 

  52. Wu L, Fan J, Belasco JG (2006) MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci U S A 103(11):4034–4039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Doench JG, Sharp PA (2004) Specificity of microRNA target selection in translational repression. Genes Dev 18(5):504–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pasquinelli AE, Dahlberg JE, Lund E (1995) Reverse 5′ caps in RNAs made in vitro by phage RNA polymerases. RNA 1(9):957–967

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Penman S, Rosbash M, Penman M (1970) Messenger and heterogeneous nuclear RNA in HeLa cells: differential inhibition by cordycepin. Proc Natl Acad Sci U S A 67(4):1878–1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hohenstein KA, Pyle AD, Chern JY, Lock LF, Donovan PJ (2008) Nucleofection mediates high-efficiency stable gene knockdown and transgene expression in human embryonic stem cells. Stem Cells 26(6):1436–1443. doi:10.1634/stemcells.2007-0857

    Article  CAS  PubMed  Google Scholar 

  57. Maess MB, Wittig B, Lorkowski S (2014) Highly efficient transfection of human THP-1 macrophages by nucleofection. J Vis Exp 91:e51960. doi:10.3791/51960

    Google Scholar 

  58. Gresch O, Engel FB, Nesic D, Tran TT, England HM, Hickman ES, Korner I, Gan L, Chen S, Castro-Obregon S, Hammermann R, Wolf J, Muller-Hartmann H, Nix M, Siebenkotten G, Kraus G, Lun K (2004) New non-viral method for gene transfer into primary cells. Methods 33(2):151–163. doi:10.1016/j.ymeth.2003.11.009

    Article  CAS  PubMed  Google Scholar 

  59. Marchenko S, Flanagan L (2007) Transfecting human neural stem cells with the Amaxa Nucleofector. J Vis Exp 6:240. doi:10.3791/240

    Google Scholar 

  60. Doench JG, Petersen CP, Sharp PA (2003) siRNAs can function as miRNAs. Genes Dev 17(4):438–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Vasudevan S (2012) Functional validation of microRNA-target RNA interactions. Methods 58(2):126–134. doi:10.1016/j.ymeth.2012.08.002

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shobha Vasudevan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Bukhari, S.I.A., Truesdell, S.S., Vasudevan, S. (2018). Analysis of MicroRNA-Mediated Translation Activation of In Vitro Transcribed Reporters in Quiescent Cells. In: Lacorazza, H. (eds) Cellular Quiescence. Methods in Molecular Biology, vol 1686. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7371-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7371-2_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7370-5

  • Online ISBN: 978-1-4939-7371-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics