Skip to main content

Simultaneous Real-Time Measurement of the β-Cell Membrane Potential and Ca2+ Influx to Assess the Role of Potassium Channels on β-Cell Function

  • Protocol
  • First Online:
Potassium Channels

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1684))

Abstract

Stimulus-secretion coupling in pancreatic β-cells requires Ca2+ influx through voltage-dependent Ca2+ channels, whose activity is controlled by the plasma membrane potential (V m). Here, we present a method of measuring fluctuations in the β-cell V m and Ca2+ influx simultaneously, which provides valuable information about the ionic signaling mechanisms that underlie insulin secretion. This chapter describes the use of perforated patch clamp electrophysiology on cells loaded with a fluorescent intracellular Ca2+ indicator, which permits the stable recording conditions needed to monitor the V m and Ca2+ influx in β-cells. Moreover, this chapter describes the protocols necessary for the preparation of mouse and human islet cells for the simultaneous recording of V m and Ca2+ as well as determining the specific islet cell type assessed in each experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Gilon P, Chae HY, Rutter GA, Ravier MA (2014) Calcium signaling in pancreatic beta-cells in health and in Type 2 diabetes. Cell Calcium 56(5):340–361. doi:10.1016/j.ceca.2014.09.001

    Article  CAS  PubMed  Google Scholar 

  2. Jacobson DA, Kuznetsov A, Lopez JP, Kash S, Ammala CE, Philipson LH (2007) Kv2.1 ablation alters glucose-induced islet electrical activity, enhancing insulin secretion. Cell Metab 6(3):229–235. doi:10.1016/j.cmet.2007.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jacobson DA, Mendez F, Thompson M, Torres J, Cochet O, Philipson LH (2010) Calcium-activated and voltage-gated potassium channels of the pancreatic islet impart distinct and complementary roles during secretagogue induced electrical responses. J Physiol 588(Pt 18):3525–3537. doi:10.1113/jphysiol.2010.190207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dadi PK, Vierra NC, Jacobson DA (2014) Pancreatic beta-cell-specific ablation of TASK-1 channels augments glucose-stimulated calcium entry and insulin secretion, improving glucose tolerance. Endocrinology 155(10):3757–3768. doi:10.1210/en.2013-2051

    Article  PubMed  PubMed Central  Google Scholar 

  5. Vierra NC, Dadi PK, Jeong I, Dickerson M, Powell DR, Jacobson DA (2015) The type-2 diabetes-associated K+ channel TALK-1 modulates beta-cell electrical excitability, 2nd-phase insulin secretion, and glucose homeostasis. Diabetes. doi:10.2337/db15-0280

  6. Tsien RY, Pozzan T, Rink TJ (1982) T-Cell mitogens cause early changes in cytoplasmic free Ca2+ and membrane potential in lymphocytes. Nature 295(5844):68–71

    Article  CAS  PubMed  Google Scholar 

  7. Suzuki J, Kanemaru K, Ishii K, Ohkura M, Okubo Y, Iino M (2014) Imaging intraorganellar Ca2+ at subcellular resolution using CEPIA. Nat Commun 5:4153. doi:10.1038/ncomms5153

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Dadi PK, Luo B, Vierra NC, Jacobson DA (2015) TASK-1 potassium channels limit pancreatic alpha-cell calcium influx and glucagon secretion. Mol Endocrinol:me20141321. doi:10.1210/me.2014-1321

  9. Rae J, Cooper K, Gates P, Watsky M (1991) Low access resistance perforated patch recordings using amphotericin B. J Neurosci Methods 37(1):15–26

    Article  CAS  PubMed  Google Scholar 

  10. Beauvois MC, Merezak C, Jonas JC, Ravier MA, Henquin JC, Gilon P (2006) Glucose-induced mixed [Ca2+]c oscillations in mouse beta-cells are controlled by the membrane potential and the SERCA3 Ca2+−ATPase of the endoplasmic reticulum. Am J Physiol Cell Physiol 290(6):C1503–C1511. doi:10.1152/ajpcell.00400.2005

    Article  CAS  PubMed  Google Scholar 

  11. Roe MW, Philipson LH, Frangakis CJ, Kuznetsov A, Mertz RJ, Lancaster ME, Spencer B, Worley JF 3rd, Dukes ID (1994) Defective glucose-dependent endoplasmic reticulum Ca2+ sequestration in diabetic mouse islets of Langerhans. J Biol Chem 269(28):18279–18282

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the laboratory of D.A.J. has been supported by National Institutes of Health Grants K01DK081666, R01DK097392, Vanderbilt DRTC Pilot and Feasibility Grant P60DK20593, ADA grant 1-17-IBS-024 (D.A.J.).; Vanderbilt METP grant 5T32DK07563, National Institutes of Health Grant 1F31DK109625 (N.C.V.); Vanderbilt ITED grant T32DK101003 (M.T.D.). Previous work in the Philipson lab was also supported by R01DK092616-01A1 (P.I.M.W. Roe) and P30DK020595 (G.I. Bell) and R01DK48494 (L.H. Philipson).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Jacobson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Vierra, N.C., Dickerson, M.T., Philipson, L.H., Jacobson, D.A. (2018). Simultaneous Real-Time Measurement of the β-Cell Membrane Potential and Ca2+ Influx to Assess the Role of Potassium Channels on β-Cell Function. In: Shyng, SL., Valiyaveetil, F., Whorton, M. (eds) Potassium Channels. Methods in Molecular Biology, vol 1684. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7362-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7362-0_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7361-3

  • Online ISBN: 978-1-4939-7362-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics