Skip to main content

Studying Kv Channels Function using Computational Methods

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1684))

Abstract

In recent years, molecular modeling techniques, combined with MD simulations, provided significant insights on voltage-gated (Kv) potassium channels intrinsic properties. Among the success stories are the highlight of molecular level details of the effects of mutations, the unraveling of several metastable intermediate states, and the influence of a particular lipid, PIP2, in the stability and the modulation of Kv channel function. These computational studies offered a detailed view that could not have been reached through experimental studies alone. With the increase of cross disciplinary studies, numerous experiments provided validation of these computational results, which endows an increase in the reliability of molecular modeling for the study of Kv channels. This chapter offers a description of the main techniques used to model Kv channels at the atomistic level.

This is a preview of subscription content, log in via an institution.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer, Sunderland, MA

    Google Scholar 

  2. Jouni M, Si-Tayeb K, Es-Salah-Lamoureux Z, Latypova X, Champon B, Caillaud A, Rungoat A, Charpentier F, Loussouarn G, Baró I, Zibara K, Lemarchand P, Gaborit N (2015) Toward personalized medicine: using cardiomyocytes differentiated from urine-derived pluripotent stem cells to recapitulate electrophysiological characteristics of Type 2 long QT syndrome. J Am Heart Assoc 4:e002159. doi:10.1161/JAHA.115.002159

    PubMed  PubMed Central  Google Scholar 

  3. Laurent G, Saal S, Amarouch MY, Béziau DM, Marsman RFJ, Faivre L, Barc J, Dina C, Bertaux G, Barthez O, Thauvin-Robinet C, Charron P, Fressart V, Maltret A, Villain E, Baron E, Mérot J, Turpault R, Coudière Y, Charpentier F, Schott J-J, Loussouarn G, Wilde AAM, Wolf J-E, Baró I, Kyndt F, Probst V (2012) Multifocal ectopic purkinje-related premature contractions. J Am Coll Cardiol 60:144–156. doi:10.1016/j.jacc.2012.02.052

    Article  PubMed  Google Scholar 

  4. Loussouarn G, Sternberg D, Nicole S, Marionneau C, Le Bouffant F, Toumaniantz G, Barc J, Malak OA, Fressart V, Péréon Y, Baró I, Charpentier F (2016) Physiological and pathophysiological insights of Nav1.4 and Nav1.5 comparison. Front Pharmacol 6:314. doi:10.3389/fphar.2015.00314

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Park K-H, Piron J, Dahimene S, Mérot J, Baró I, Escande D, Loussouarn G (2005) Impaired KCNQ1-KCNE1 and phosphatidylinositol-4,5-bisphosphate interaction underlies the long QT syndrome. Circ Res 96:730–739. doi:10.1161/01.RES.0000161451.04649.a8

    Article  CAS  PubMed  Google Scholar 

  6. Yang Y, Vasylyev DV, Dib-Hajj F, Veeramah KR, Hammer MF, Dib-Hajj SD, Waxman SG (2013) Multistate structural modeling and voltage-clamp analysis of epilepsy/autism mutation Kv10.2-R327H demonstrate the role of this residue in stabilizing the channel closed state. J Neurosci 33:16586–16593. doi:10.1523/JNEUROSCI.2307-13.2013

    Article  CAS  PubMed  Google Scholar 

  7. Nattel S, Maguy A, Le Bouter S, Yeh Y-H (2007) Arrhythmogenic ion-channel remodeling in the heart: heart failure, myocardial infarction, and atrial fibrillation. Physiol Rev 87:425–456. doi:10.1152/physrev.00014.2006

    Article  CAS  PubMed  Google Scholar 

  8. Charpentier F, Mérot J, Loussouarn G, Baró I (2010) Delayed rectifier K+ currents and cardiac repolarization. J Mol Cell Cardiol 48:37–44. doi:10.1016/j.yjmcc.2009.08.005

    Article  CAS  PubMed  Google Scholar 

  9. Schroeder BC, Waldegger S, Fehr S, Bleich M, Warth R, Greger R, Jentsch TJ (2000) A constitutively open potassium channel formed by KCNQ1 and KCNE3. Nature 403:196–199. doi:10.1038/35003200

    Article  CAS  PubMed  Google Scholar 

  10. Vallon V, Grahammer F, Volkl H, Sandu CD, Richter K, Rexhepaj R, Gerlach U, Rong Q, Pfeifer K, Lang F (2005) KCNQ1-dependent transport in renal and gastrointestinal epithelia. Proc Natl Acad Sci 102:17864–17869. doi:10.1073/pnas.0505860102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Whicher JR, MacKinnon R (2016) Structure of the voltage-gated K+ channel Eag1 reveals an alternative voltage sensing mechanism. Science 353:664–669. doi:10.1126/science.aaf8070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260:799–802

    Article  CAS  PubMed  Google Scholar 

  13. Armstrong CM, Bezanilla F (1973) Currents related to movement of the gating particles of the sodium channels. Nature 242:459–461

    Article  CAS  PubMed  Google Scholar 

  14. Aggarwal SK, MacKinnon R (1996) Contribution of the S4 segment to gating charge in the Shaker K+ channel. Neuron 16:1169–1177. doi:10.1016/S0896-6273(00)80143-9

    Article  CAS  PubMed  Google Scholar 

  15. Seoh S-A, Sigg D, Papazian DM, Bezanilla F (1996) Voltage-sensing residues in the S2 and S4 segments of the shaker K+ channel. Neuron 16:1159–1167. doi:10.1016/S0896-6273(00)80142-7

    Article  CAS  PubMed  Google Scholar 

  16. Stefani E, Toro L, Perozo E, Bezanilla F (1994) Gating of shaker K+ channels: I. Ionic and gating currents. Biophys J 66:996–1010. doi:10.1016/S0006-3495(94)80881-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Loussouarn G (2003) Phosphatidylinositol-4,5-bisphosphate, PIP2, controls KCNQ1/KCNE1 voltage-gated potassium channels: a functional homology between voltage-gated and inward rectifier K+ channels. EMBO J 22:5412–5421. doi:10.1093/emboj/cdg526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tempel BL, Papazian DM, Schwarz TL, Jan YN, Jan LY (1987) Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila. Science 237:770–775. doi:10.1126/science.2441471

    Article  CAS  PubMed  Google Scholar 

  19. Noda M, Shimizu S, Tanabe T, Takai T, Kayano T, Ikeda T, Takahashi H, Nakayama H, Kanaoka Y, Minamino N (1984) Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312:121–127

    Article  CAS  PubMed  Google Scholar 

  20. Long SB (2005) Voltage sensor of Kv1.2: structural basis of electromechanical coupling. Science 309:903–908. doi:10.1126/science.1116270

    Article  CAS  PubMed  Google Scholar 

  21. Doyle DA, Morais Cabral J, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  CAS  PubMed  Google Scholar 

  22. del Camino D, Holmgren M, Liu Y, Yellen G (2000) Blocker protection in the pore of a voltage-gated K+ channel and its structural implications. Nature 403:321–325. doi:10.1038/35002099

    Article  PubMed  CAS  Google Scholar 

  23. Beckstein O, Biggin PC, Bond P, Bright JN, Domene C, Grottesi A, Holyoake J, Sansom MS (2003) Ion channel gating: insights via molecular simulations. FEBS Lett 555:85–90. doi:10.1016/S0014-5793(03)01151-7

    Article  CAS  PubMed  Google Scholar 

  24. Domene C, Haider S, Sansom MSP (2003) Ion channel structures: a review of recent progress. Curr Opin Drug Discov Devel 6:611–619

    CAS  PubMed  Google Scholar 

  25. Broomand A, Männikkö R, Larsson HP, Elinder F (2003) Molecular movement of the voltage sensor in a K channel. J Gen Physiol 122:741–748. doi:10.1085/jgp.200308927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Neale EJ, Elliott DJS, Hunter M, Sivaprasadarao A (2003) Evidence for intersubunit interactions between S4 and S5 transmembrane segments of the shaker potassium channel. J Biol Chem 278:29079–29085. doi:10.1074/jbc.M301991200/6493

    Article  CAS  PubMed  Google Scholar 

  27. Long SB, Tao X, Campbell EB, MacKinnon R (2007) Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450:376–382. doi:10.1038/nature06265

    Article  CAS  PubMed  Google Scholar 

  28. Chen X, Wang Q, Ni F, Ma J (2010) Structure of the full-length Shaker potassium channel Kv1.2 by normal-mode-based X-ray crystallographic refinement. Proc Natl Acad Sci U S A 107:11352–11357. doi:10.1073/pnas.1000142107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Vardanyan V, Pongs O (2012) Coupling of voltage-sensors to the channel pore: a comparative view. Front Pharmacol 3:145. doi:10.3389/fphar.2012.00145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ferrer T, Rupp J, Piper DR, Tristani-Firouzi M (2006) The S4-S5 linker directly couples voltage sensor movement to the activation gate in the human ether-a-go-go-related gene (hERG) K+ channel. J Biol Chem 281:12858–12864. doi:10.1074/jbc.M513518200

    Article  CAS  PubMed  Google Scholar 

  31. Choveau FS, Rodriguez N, Ali FA, Labro AJ, Rose T, Dahimene S, Boudin H, Le Henaff C, Escande D, Snyders DJ, Charpentier F, Merot J, Baro I, Loussouarn G (2011) KCNQ1 channels voltage dependence through a voltage-dependent binding of the S4-S5 linker to the pore domain. J Biol Chem 286:707–716. doi:10.1074/jbc.M110.146324

    Article  CAS  PubMed  Google Scholar 

  32. Choveau FS, Abderemane-Ali F, Coyan FC, Es-Salah-Lamoureux Z, Baró I, Loussouarn G (2012) Opposite effects of the S4–S5 linker and PIP2 on voltage-gated channel function: KCNQ1/KCNE1 and other channels. Front Pharmacol 3:125. doi:10.3389/fphar.2012.00125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zaydman MA, Silva JR, Delaloye K, Li Y, Liang H, Larsson HP, Shi J, Cui J (2013) Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening. Proc Natl Acad Sci 110:13180–13185. doi:10.1073/pnas.1305167110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zaydman MA, Kasimova MA, McFarland K, Beller Z, Hou P, Kinser HE, Liang H, Zhang G, Shi J, Tarek M et al (2014) Domain–domain interactions determine the gating, permeation, pharmacology, and subunit modulation of the IKs ion channel. Elife 3:e03606

    Article  PubMed  PubMed Central  Google Scholar 

  35. Smith JA, Vanoye CG, George AL, Meiler J, Sanders CR (2007) Structural models for the KCNQ1 voltage-gated potassium channel . Biochemistry (Mosc) 46:14141–14152. doi:10.1021/bi701597s

    Article  CAS  Google Scholar 

  36. Xu Y, Wang Y, Meng X-Y, Zhang M, Jiang M, Cui M, Tseng G-N (2013) Building KCNQ1/KCNE1 channel models and probing their interactions by molecular-dynamics simulations. Biophys J 105:2461–2473. doi:10.1016/j.bpj.2013.09.058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kasimova MA, Zaydman MA, Cui J, Tarek M (2015) PIP2-dependent coupling is prominent in Kv7.1 due to weakened interactions between S4-S5 and S6. Sci Rep 5:7474. doi:10.1038/srep07474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pons J-L, Labesse G (2009) @TOME-2: a new pipeline for comparative modeling of protein-ligand complexes. Nucleic Acids Res 37:W485–W491. doi:10.1093/nar/gkp368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res 42:W252–W258. doi:10.1093/nar/gku340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yu J, Picord G, Tuffery P, Guerois R (2015) HHalign-Kbest: exploring sub-optimal alignments for remote homology comparative modeling: Fig. 1. Bioinformatics 31:3850. doi:10.1093/bioinformatics/btv441

    CAS  PubMed  Google Scholar 

  41. Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948. doi:10.1093/bioinformatics/btm404

    Article  CAS  PubMed  Google Scholar 

  43. Krivov GG, Shapovalov MV, Dunbrack RL (2009) Improved prediction of protein side-chain conformations with SCWRL4. Proteins Struct Funct Bioinforma 77:778–795. doi:10.1002/prot.22488

    Article  CAS  Google Scholar 

  44. Webb B, Sali A (2014) Comparative protein structure modeling using MODELLER: comparative protein structure modeling using MODELLER. In: Bateman A, Pearson WR, Stein LD, Stormo GD, Yates JR (eds) Current protocal bioinformatics. John Wiley & Sons, Inc., Hoboken, NJ, pp 5.6.1–5.6.32

    Chapter  Google Scholar 

  45. Peng D, Kim J-H, Kroncke BM, Law CL, Xia Y, Droege KD, Van Horn WD, Vanoye CG, Sanders CR (2014) Purification and structural study of the voltage-sensor domain of the human KCNQ1 potassium ion channel. Biochemistry (Mosc) 53:2032–2042. doi:10.1021/bi500102w

    Article  CAS  Google Scholar 

  46. Wu D, Delaloye K, Zaydman MA, Nekouzadeh A, Rudy Y, Cui J (2010) State-dependent electrostatic interactions of S4 arginines with E1 in S2 during Kv7.1 activation. J Gen Physiol 135:595–606. doi:10.1085/jgp.201010408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wu D, Pan H, Delaloye K, Cui J (2010) KCNE1 remodels the voltage sensor of Kv7.1 to modulate channel function. Biophys J 99:3599–3608. doi:10.1016/j.bpj.2010.10.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shen M, Sali A (2006) Statistical potential for assessment and prediction of protein structures. Protein Sci 15:2507–2524. doi:10.1110/ps.062416606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Morris AL, MacArthur MW, Hutchinson EG, Thornton JM (1992) Stereochemical quality of protein structure coordinates. Proteins Struct Funct Genet 12:345–364. doi:10.1002/prot.340120407

    Article  CAS  PubMed  Google Scholar 

  50. Rohl CA, Strauss CEM, Chivian D, Baker D (2004) Modeling structurally variable regions in homologous proteins with rosetta. Proteins Struct Funct Bioinforma 55:656–677. doi:10.1002/prot.10629

    Article  CAS  Google Scholar 

  51. Raman S, Vernon R, Thompson J, Tyka M, Sadreyev R, Pei J, Kim D, Kellogg E, DiMaio F, Lange O, Kinch L, Sheffler W, Kim B-H, Das R, Grishin NV, Baker D (2009) Structure prediction for CASP8 with all-atom refinement using Rosetta. Proteins Struct Funct Bioinforma 77:89–99. doi:10.1002/prot.22540

    Article  CAS  Google Scholar 

  52. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER Suite: protein structure and function prediction. Nat Methods 12:7–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yarov-Yarovoy V, Baker D, Catterall WA (2006) Voltage sensor conformations in the open and closed states in ROSETTA structural models of K(+) channels. Proc Natl Acad Sci U S A 103:7292–7297. doi:10.1073/pnas.0602350103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Clarendon Press, Oxford

    Google Scholar 

  55. Leach AR (2001) Molecular modelling: principles and applications, 2nd edn. Prentice Hall, Harlow

    Google Scholar 

  56. Frenkel D, Smit B (2002) Understanding molecular simulation: from algorithms to applications, 2nd edn. Academic Press, San Diego, CA

    Google Scholar 

  57. Schuler LD, Daura X, van Gunsteren WF (2001) An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase. J Comput Chem 22:1205–1218. doi:10.1002/jcc.1078

    Article  CAS  Google Scholar 

  58. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins . J Phys Chem B 102:3586–3616. doi:10.1021/jp973084f

    Article  CAS  PubMed  Google Scholar 

  59. Ponder JW, Case DA (2003) Force fields for protein simulations. Adv Protein Chem 66:27–85

    Article  CAS  PubMed  Google Scholar 

  60. Jorgensen WL, Maxwell DS, Tirado-Rives J (1996) Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 118:11225–11236. doi:10.1021/ja9621760

    Article  CAS  Google Scholar 

  61. Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29:1859–1865. doi:10.1002/jcc.20945

    Article  CAS  PubMed  Google Scholar 

  62. Wu EL, Cheng X, Jo S, Rui H, Song KC, Dávila-Contreras EM, Qi Y, Lee J, Monje-Galvan V, Venable RM, Klauda JB, Im W (2014) CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. J Comput Chem 35:1997–2004. doi:10.1002/jcc.23702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xu Y, Ramu Y, Lu Z (2008) Removal of phospho-head groups of membrane lipids immobilizes voltage sensors of K+ channels. Nature 451:826–829. doi:10.1038/nature06618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang H, Craciun LC, Mirshahi T, Rohács T, Lopes CMB, Jin T, Logothetis DE (2003) PIP2 activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents. Neuron 37:963–975. doi:10.1016/S0896-6273(03)00125-9

    Article  CAS  PubMed  Google Scholar 

  65. Eckey K, Wrobel E, Strutz-Seebohm N, Pott L, Schmitt N, Seebohm G (2014) Novel Kv7.1-phosphatidylinositol 4,5-bisphosphate interaction sites uncovered by charge neutralization scanning. J Biol Chem 289:22749–22758. doi:10.1074/jbc.M114.589796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shaw DE, Dror RO, Salmon JK, Grossman JP, Mackenzie KM, Bank JA, Young C, Deneroff MM, Batson B, Bowers KJ, Chow E, Eastwood MP, Ierardi DJ, Klepeis JL, Kuskin JS, Larson RH, Lindorff-Larsen K, Maragakis P, Moraes MA, Piana S, Shan Y, Towles B (2009) Millisecond-scale molecular dynamics simulations on anton. In: Proc. Conf. High Perform. Comput. Netw. Storage Anal. ACM, New York, NY, pp 39.1–39.11

    Google Scholar 

  67. Martyna GJ, Klein ML, Tuckerman M (1992) Nosé–Hoover chains: the canonical ensemble via continuous dynamics. J Chem Phys 97:2635–2643. doi:10.1063/1.463940

    Article  Google Scholar 

  68. Brooks BR, Brooks CL, Mackerell AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G, Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J, Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB, Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614. doi:10.1002/jcc.21287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Case DA, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM, Onufriev A, Simmerling C, Wang B, Woods RJ (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688. doi:10.1002/jcc.20290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC (2005) GROMACS: fast, flexible, and free. J Comput Chem 26:1701–1718. doi:10.1002/jcc.20291

    Article  CAS  Google Scholar 

  71. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802. doi:10.1002/jcc.20289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bowers KJ, Chow E, Xu H, Dror RO, Eastwood MP, Gregersen BA, Klepeis JL, Kolossvary I, Moraes MA, Sacerdoti FD et al (2006) Scalable algorithms for molecular dynamics simulations on commodity clusters. In: Proc. 2006 ACMIEEE Conf. Supercomput. ACM, New York, NY, p 84

    Google Scholar 

  73. Buck M, Bouguet-Bonnet S, Pastor RW, MacKerell AD (2006) Importance of the CMAP correction to the CHARMM22 protein force field: dynamics of hen lysozyme. Biophys J 90:L36–L38. doi:10.1529/biophysj.105.078154

    Article  CAS  PubMed  Google Scholar 

  74. Suenaga A, Komeiji Y, Uebayasi M, Meguro T, Saito M, Yamato I (1998) Computational observation of an ion permeation through a channel protein. Biosci Rep 18:39–48. doi:10.1023/A:1022292801256

    Article  CAS  PubMed  Google Scholar 

  75. Zhong Q, Jiang Q, Moore PB, Newns DM, Klein ML (1998) Molecular dynamics simulation of a synthetic ion channel. Biophys J 74:3–10. doi:10.1016/S0006-3495(98)77761-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tieleman DP, Biggin PC, Smith GR, Sansom MSP (2001) Simulation approaches to ion channel structure–function relationships. Q Rev Biophys 34:473–561. doi:10.1017/S0033583501003729

    Article  CAS  PubMed  Google Scholar 

  77. Crozier PS, Henderson D, Rowley RL, Busath DD (2001) Model channel ion currents in NaCl-extended simple point charge water solution with applied-field molecular dynamics. Biophys J 81:3077–3089. doi:10.1016/S0006-3495(01)75946-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tarek M (2005) Membrane electroporation: a molecular dynamics simulation. Biophys J 88:4045–4053. doi:10.1529/biophysj.104.050617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tieleman DP (2004) The molecular basis of electroporation. BMC Biochem 5:10. doi:10.1186/1471-2091-5-10

    Article  PubMed  PubMed Central  Google Scholar 

  80. Gumbart J, Khalili-Araghi F, Sotomayor M, Roux B (2012) Constant electric field simulations of the membrane potential illustrated with simple systems. Biochim Biophys Acta 1818:294–302. doi:10.1016/j.bbamem.2011.09.030

    Article  CAS  PubMed  Google Scholar 

  81. Bjelkmar P, Niemelä PS, Vattulainen I, Lindahl E (2009) Conformational changes and slow dynamics through microsecond polarized atomistic molecular simulation of an integral Kv1.2 ion channel. PLoS Comput Biol 5:e1000289. doi:10.1371/journal.pcbi.1000289

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Schow EV, Nizkorodov A, Freites JA, White SH, Tobias DJ (2010) Down-state model of the KvAP full channel. Biophys J 98:315a. doi:10.1016/j.bpj.2009.12.1709

    Article  Google Scholar 

  83. Jensen MØ, Jogini V, Borhani DW, Leffler AE, Dror RO, Shaw DE (2012) Mechanism of voltage gating in potassium channels. Science 336:229–233. doi:10.1126/science.1216533

    Article  CAS  PubMed  Google Scholar 

  84. Köpfer DA, Song C, Gruene T, Sheldrick GM, Zachariae U, de Groot BL (2014) Ion permeation in K+ channels occurs by direct Coulomb knock-on. Science 346:352–355. doi:10.1126/science.1254840

    Article  PubMed  CAS  Google Scholar 

  85. Delemotte L, Tarek M, Klein ML, Amaral C, Treptow W (2011) Intermediate states of the Kv1. 2 voltage sensor from atomistic molecular dynamics simulations. Proc Natl Acad Sci 108:6109–6114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Delemotte L, Dehez F, Treptow W, Tarek M (2008) Modeling membranes under a transmembrane potential. J Phys Chem B 112:5547–5550. doi:10.1021/jp710846y

    Article  CAS  PubMed  Google Scholar 

  87. Bostick D, Berkowitz ML (2003) The implementation of slab geometry for membrane-channel molecular dynamics simulations. Biophys J 85:97–107. doi:10.1016/S0006-3495(03)74458-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kutzner C, Grubmüller H, de Groot BL, Zachariae U (2011) Computational electrophysiology: the molecular dynamics of ion channel permeation and selectivity in atomistic detail. Biophys J 101:809–817. doi:10.1016/j.bpj.2011.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(33–38):27–28

    Google Scholar 

  90. Perozo E, MacKinnon R, Bezanilla F, Stefani E (1993) Gating currents from a nonconducting mutant reveal open-closed conformations in Shaker K+ channels. Neuron 11:353–358

    Article  CAS  PubMed  Google Scholar 

  91. Nonner W, Peyser A, Gillespie D, Eisenberg B (2004) Relating microscopic charge movement to macroscopic currents: the Ramo-Schockley theorem applied to ion channels. Biophys J 87:3716–3722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Treptow W, Tarek M, Klein ML (2009) Initial response of the potassium channel voltage sensor to a transmembrane potential. J Am Chem Soc 131:2107–2109. doi:10.1021/ja807330g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Roux B (2008) The membrane potential and its representation by a constant electric field in computer simulations. Biophys J 95:4205–4216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sigworth FJ (1994) Voltage gating of ion channels. Q Rev Biophys 27:1–40

    Article  CAS  PubMed  Google Scholar 

  95. Lecar H, Larsson HP, Grabe M (2003) Electrostatic model of S4 motion in voltage-gated ion channels. Biophys J 85:2854–2864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Jogini V, Roux B (2007) Dynamics of the Kv1. 2 voltage-gated K+ channel in a membrane environment. Biophys J 93:3070–3082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Islas LD, Sigworth FJ (2001) Electrostatic and the gating pore of Shaker potassium channels. J Gen Physiol 117:69–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Roux BT (1997) Influence of the membrane potential on the free energy of an intrinsic protein. Biophys J 73:2980–2989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Grabe M, Lecar H, Jan YN, Jan LY (2004) A quantitative assessment of models for voltage-dependent gating ion channels. Proc Natl Acad Sci U S A 101:17640–17645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Dedek K, Kunath B, Kananura C, Reuner U, Jentsch TJ, Steinlein OK (2001) Myokymia and neonatal epilepsy caused by a mutation in the voltage sensor of the KCNQ2 K+ channel. Proc Natl Acad Sci 98:12272–12277. doi:10.1073/pnas.211431298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lupoglazoff J-M, Denjoy I, Villain E, Fressart V, Simon F, Bozio A, Berthet M, Benammar N, Hainque B, Guicheney P (2004) Long QT syndrome in neonates. J Am Coll Cardiol 43:826–830. doi:10.1016/j.jacc.2003.09.049

    Article  CAS  PubMed  Google Scholar 

  102. Millat G, Chevalier P, Restier-Miron L, Da Costa A, Bouvagnet P, Kugener B, Fayol L, Gonzàlez Armengod C, Oddou B, Chanavat V, Froidefond E, Perraudin R, Rousson R, Rodriguez-Lafrasse C (2006) Spectrum of pathogenic mutations and associated polymorphisms in a cohort of 44 unrelated patients with long QT syndrome. Clin Genet 70:214–227. doi:10.1111/j.1399-0004.2006.00671.x

    Article  CAS  PubMed  Google Scholar 

  103. Tombola F, Pathak MM, Gorostiza P, Isacoff EY (2006) The twisted ion-permeation pathway of a resting voltage-sensing domain. Nature 445:546–549. doi:10.1038/nature05396

    Article  PubMed  CAS  Google Scholar 

  104. Tombola F, Pathak MM, Isacoff EY (2005) Voltage-sensing arginines in a potassium channel permeate and occlude cation-selective pores. Neuron 45:379–388

    Article  CAS  PubMed  Google Scholar 

  105. Starace DM, Bezanilla F (2004) A proton pore in a potassium channel voltage sensor reveals a focused electric field. Nature 427:548–553. doi:10.1038/nature02270

    Article  CAS  PubMed  Google Scholar 

  106. Starace DM, Bezanilla F (2001) Histidine scanning mutagenesis of basic residues of the S4 segment of the shaker potassium channel. J Gen Physiol 117:469–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Delemotte L, Treptow W, Klein ML, Tarek M (2010) Effect of sensor domain mutations on the properties of voltage-gated ion channels: molecular dynamics studies of the potassium channel Kv1.2. Biophys J 99:L72–L74. doi:10.1016/j.bpj.2010.08.069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gamal El-Din TM, Heldstab H, Lehmann C, Greeff NG (2010) Double gaps along Shaker S4 demonstrate omega currents at three different closed states. Channels Austin TX 4:93–100

    Article  Google Scholar 

  109. Khalili-Araghi F, Tajkhorshid E, Roux B, Schulten K (2012) Molecular dynamics investigation of the ω-current in the Kv1.2 voltage sensor domains. Biophys J 102:258–267. doi:10.1016/j.bpj.2011.10.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

Results of the MD simulations were obtained thanks to generous allocation of computer time from GENCI France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mounir Tarek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Deyawe, A., Kasimova, M.A., Delemotte, L., Loussouarn, G., Tarek, M. (2018). Studying Kv Channels Function using Computational Methods. In: Shyng, SL., Valiyaveetil, F., Whorton, M. (eds) Potassium Channels. Methods in Molecular Biology, vol 1684. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7362-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7362-0_24

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7361-3

  • Online ISBN: 978-1-4939-7362-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics