Skip to main content

Building Atomic Models of the Ion Channels Based on Low Resolution Electron Microscopy Maps and Homology Modeling

  • Protocol
  • First Online:
  • 1850 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1684))

Abstract

Voltage-gated potassium channels play pivotal roles in excitable and non-excitable cells. For many decades, structural properties and molecular mechanisms of these channels were inferred from functional observations. At the turn of the twenty-first century, structural biology revealed major aspects in the structural basis of ion channel organization, permeation, and gating. Among the available tools, homology modeling associated with low resolution microscopy helps in delineating the different structural elements of voltage-gated channels. Here, we describe in detail the methodology of homology modeling, using the 3D structure of the Kv2.1ΔCTA ion channel as a reference.

This is a preview of subscription content, log in via an institution.

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hille B (2001) Ion channels of excitable membranes, 3rd edn. Great Britain, Sinauer, Sunderland, MA

    Google Scholar 

  2. Brueggemann LI, Gentile S, Byron KL (2013) Social networking among voltage-activated potassium channels. Prog Mol Biol Transl Sci 117:269–302

    Article  PubMed  Google Scholar 

  3. Jin HW, Wang XL (2002) Voltage-gated potassium channels and human neurological diseases. Sheng Li Ke Xue Jin Zhan 33(1):21–25

    PubMed  Google Scholar 

  4. Gutman GA et al (2003) International union of pharmacology. XLI. Compendium of voltage-gated ion channels: potassium channels. Pharmacol Rev 55:583–586

    Article  CAS  PubMed  Google Scholar 

  5. Pischalnikova AV, Sokolova OS (2009) The domain and conformational organization in potassium voltage-gated ion channels. J Neuroimmune Pharmacol 4:71–82

    Article  PubMed  Google Scholar 

  6. Huo R, Sheng Y, Guo WT, Dong DL (2014) The potential role of Kv4.3 K+ channel in heart hypertrophy. Channels (Austin) 8(3):203–209. doi:10.4161/chan.28972

    Article  Google Scholar 

  7. Charpentier F, Mérot J, Loussouarn G, Baró I (2010) Delayed rectifier K+ currents and cardiac repolarization. J Mol Cell Cardiol 48:37–44. doi:10.1016/j.yjmcc.2009.08.005

    Article  CAS  PubMed  Google Scholar 

  8. Murakoshi H, Trimmer JS (1999) Identification of the Kv2.1 K+ channel as a major component of the delayed rectifier K+ current in rat hippocampal neurons. J Neurosci 19:1728–1735

    CAS  PubMed  Google Scholar 

  9. Malin SA, Nerbonne JM (2002) Delayed rectifier K+ currents, I K, are encoded by Kv2 α-subunits and regulate tonic firing in mammalian sympathetic neurons. J Neurosci 22:10094–10105

    CAS  PubMed  Google Scholar 

  10. Jacobson DA, Kuznetsov A, Lopez JP, Kash S, Ammala CE, Philipson LH (2007) Kv2.1 ablation alters glucose-induced islet electrical activity, enhancing insulin secretion. Cell Metab 6:229–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. MacDonald PE, Sewing S, Wang J et al (2002) Inhibition of Kv2.1 voltage-dependent K+ channels in pancreatic beta-cells enhances glucose-dependent insulin secretion. J Biol Chem 277:44938–44945

    Article  CAS  PubMed  Google Scholar 

  12. Preston P, Wartosch L, Günzel D, Fromm M, Kongsuphol P, Ousingsawat J, Kunzelmann K, Barhanin J, Warth R, Jentsch TJ (2010) Disruption of the K+ channel β-subunit KCNE3 reveals an important role in intestinal and tracheal Cl transport. J Biol Chem 285:7165–7175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Abbott GW (2016) KCNE1 and KCNE3: The yin and yang of voltage-gated K+ channel regulation. Gene 576:1–13

    Article  CAS  PubMed  Google Scholar 

  14. Al-Hazza A, Linley J, Aziz Q, Hunter M, Sandle G (2016) Upregulation of basolateral small conductance potassium channels (KCNQ1/KCNE3) in ulcerative colitis. Biochem Biophys Res Commun 470:473–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu WK, Li GR, Wong HP et al (2006) Involvement of Kv1.1 and Nav1.5 in proliferation of gastric epithelial cells. J Cell Physiol 207:437–444. doi:10.1002/jcp.20576

    Article  CAS  PubMed  Google Scholar 

  16. Suzuki T, Takimoto K (2004) Selective expression of HERG and Kv2 channels influences proliferation of uterine cancer cells. Int J Oncol 25:153–159

    CAS  PubMed  Google Scholar 

  17. Song MS, Choi SY, Ryu PD, Lee SY (2016) Voltage-gated K+ channel, Kv3.3 is involved in hemin-induced K562 differentiation. PLoS One 11(2):e0148633. doi:10.1371/journal.pone.0148633

    Article  PubMed  PubMed Central  Google Scholar 

  18. Leanza L, Zoratti M, Gulbins E, Szabò I (2012) Induction of apoptosis in macrophages via Kv1.3 and Kv1.5 potassium channels. Curr Med Chem 19:5394–5404. doi:10.2174/092986712803833281

    Article  CAS  PubMed  Google Scholar 

  19. Villalonga N, Escalada A, Vicente R et al (2007) Kv1.3/Kv1.5 heteromeric channels compromise pharmacological responses in macrophages. Biochem Biophys Res Commun 352(4):913–918

    Article  CAS  PubMed  Google Scholar 

  20. Villalonga N, David M, Bielanska J et al (2010) Immunomodulation of voltage-dependent K+ channels in macrophages: molecular and biophysical consequences. J Gen Physiol 135(2):135–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shenasa F, Shenasa M (2016) Dofetilide: electrophysiologic effect, efficacy, and safety in patients with cardiac arrhythmias. Card Electrophysiol Clin 8(2):423–436

    Article  PubMed  Google Scholar 

  22. Tempel BL, Papazian DM, Schwarz TL, Jan YN, Jan LY (1987) Sequence of a probable potassium channel component encoded at Shaker locus of Drosophila. Science 237:770–775

    Article  CAS  PubMed  Google Scholar 

  23. Yellen G (1998) The moving parts of voltage-gated ion channels. Q Rev Biophys 31(3):239–295

    Article  CAS  PubMed  Google Scholar 

  24. Bezanilla F (2000) The voltage sensor in voltage-dependent ion channels. Physiol Rev 80(2):555–592

    CAS  PubMed  Google Scholar 

  25. Jentsch TJ, Hubner CA, Fuhrmann JC (2004) Ion channels: function unravelled by dysfunction. Nat Cell Biol 6:1039–1047

    Article  CAS  PubMed  Google Scholar 

  26. Lehmann-Horn F, Jurkat-Rott K (1999) Voltage-gated ion channels and hereditary disease. Physiol Rev 79(4):1317–1372

    CAS  PubMed  Google Scholar 

  27. Loussouarn G, Baró I, Escande D (2006) KCNQ1 K+ channel-mediated cardiac channelopathies. Methods Mol Biol 337:167–183

    CAS  PubMed  Google Scholar 

  28. Neher E, Sakmann B (1976) Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260:799–802

    Article  CAS  PubMed  Google Scholar 

  29. Doyle DA et al (1998) The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    Article  CAS  PubMed  Google Scholar 

  30. Jiang Y et al (2002) Crystal structure and mechanism of a calcium-gated potassium channel. Nature 417:515–522

    Article  CAS  PubMed  Google Scholar 

  31. Jiang Y et al (2002) The open pore conformation of potassium channels. Nature 417:523–526

    Article  CAS  PubMed  Google Scholar 

  32. Long SB, Campbell EB, Mackinnon R (2005) Crystal structure of a mammalian voltage-dependent Shaker family K+ channel. Science 309:897–903

    Article  CAS  PubMed  Google Scholar 

  33. Long SB, Tao X, Campbell EB, MacKinnon R (2007) Atomic structure of a voltage-dependent K+ channel in a lipid membrane-like environment. Nature 450:376–382

    Article  CAS  PubMed  Google Scholar 

  34. Wu J et al (2015) Structure of the voltage-gated calcium channel Cav1.1 complex. Science 350:aad2395

    Article  PubMed  Google Scholar 

  35. Wang HW, Wang JW (2017) How cryo-electron microscopy and X-ray crystallography complement each other. Protein Sci 26(1):32–39. doi:10.1002/pro.3022

    Article  CAS  PubMed  Google Scholar 

  36. Kuhlbrandt W (2014) Biochemistry. The resolution revolution. Science 343:1443–1444

    Article  PubMed  Google Scholar 

  37. Wu J, Yan Z, Li Z, Qian X, Lu S, Dong M et al (2016) Structure of the voltage-gated calcium channel Cav1.1 at 3.6 Å resolution. Nature 537:191–196

    Article  CAS  PubMed  Google Scholar 

  38. Adair B, Nunn R, Lewis S, Dukes I, Philipson L, Yeager M (2008) Single particle image reconstruction of the human, recombinant Kv2.1 channel. Biophys J 4:2106–2114

    Article  Google Scholar 

  39. Grizel A, Popinako A, Kasimova MA, Stevens L, Karlova M, Moisenovich MM et al (2014) Domain structure and conformational changes in rat KV2.1 ion channel. J Neuroimmune Pharmacol 9(5):727–739

    Article  PubMed  Google Scholar 

  40. Ju M, Stevens L, Leadbitter E, Wray D (2003) The Roles of N- and C-terminal determinants in the activation of the Kv2.1 potassium channel. J Biol Chem 278(15):12769–12778

    Article  CAS  PubMed  Google Scholar 

  41. Matthews BW (1968) Solvent content of protein crystals. J Mol Biol 33:491–497

    Article  CAS  PubMed  Google Scholar 

  42. Frank J, Radermacher M, Penczek P, Zhu J, Li Y, Ladjadj M, Leith A (1996) SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fi elds. J Struct Biol 116:190–199

    Article  CAS  PubMed  Google Scholar 

  43. Crowther RA, Henderson R, Smith JM (1996) MRC image processing programs. J Struct Biol 116:9–16

    Article  CAS  PubMed  Google Scholar 

  44. van Heel M, Harauz G, Orlova EV, Schmidt R, Schatz M (1996) A new generation of the IMAGIC image processing system. J Struct Biol 116:17–24

    Article  PubMed  Google Scholar 

  45. Scheres SH (2012) RELION: implementation of a Bayesian approach to cryo-EM structure determination. J Struct Biol 180(3):519–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. UniProt Consortium (2015) UniProt: a hub for protein information. Nucleic Acids Res 43(Database issue):D204–D212

    Article  Google Scholar 

  48. Pearson WR (2016) Finding protein and nucleotide similarities with FASTA. Curr Protoc Bioinformatics 53:3.9.1–3.925

    Article  Google Scholar 

  49. Sievers F, Wilm A, Dineen DG, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7:539

    Article  PubMed  PubMed Central  Google Scholar 

  50. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Notredame C, Higgins DG, Heringa J (2000) T-Coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol 302(1):205–217

    Article  CAS  PubMed  Google Scholar 

  52. Okonechnikov K, Golosova O, Fursov M (2012) UGENE team. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28(8):1166–1167

    Article  CAS  PubMed  Google Scholar 

  53. Fiser A, Sali A (2003) Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol 374:461–491

    Article  CAS  PubMed  Google Scholar 

  54. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31(13):3381–3385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Roy A, Kucukural A, Zhang Y (2010) I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 5:725–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  57. Emsley P, Lohkamp B, Scott W, Cowtan K (2010) Features and development of Coot. Acta Crystallogr D Biol Crystallogr 66:486–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Jones TA, Zou JY, Cowan SW, Kjeldgaard M (1991) Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr A 47:110–119

    Article  PubMed  Google Scholar 

  59. Fabiola F, Chapman MS (2005) Fitting of high-resolution structures into electron microscopy reconstruction images. Structure 13(3):389–400

    Article  CAS  PubMed  Google Scholar 

  60. Topf M, Sali A (2005) Combining electron microscopy and comparative protein structure modeling. Curr Opin Struct Biol 15(5):578–585

    Article  CAS  PubMed  Google Scholar 

  61. Allen GS, Stokes DL (2013) Modeling, docking, and fitting of atomic structures to 3D maps from cryo-electron microscopy. Methods Mol Biol 955:229–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kreusch A, Pfaffinger PJ, Stevens CF, Choe S (1998) Crystal structure of the tetramerization domain of the Shaker potassium channel. Nature 392(6679):945–948

    Article  CAS  PubMed  Google Scholar 

  63. Pioletti M, Findeisen F, Hura GL, Minor DL Jr (2006) Three-dimensional structure of the KChIP1-Kv4.3 T1 complex reveals a cross-shaped octamer. Nat Struct Mol Biol 13:987–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bixby KA, Nanao MH, Shen NV, Kreusch A, Bellamy H, Pfaffinger PJ, Choe S (1999) Zn2+-binding and molecular determinants of tetramerization in voltage-gated K+ channels. Nat Struct Biol 6:38–43

    Article  CAS  PubMed  Google Scholar 

  65. Sillitoe I, Lewis TE, Cuff A, Das S, Ashford P, Dawson NL, Furnham N, Laskowski RA, Lee D, Lees JG, Lehtinen S, Studer RA, Thornton J, Orengo CA (2015) CATH: comprehensive structural and functional annotations for genome sequences. Nucleic Acids Res 43(Database issue):D376–D381

    Article  CAS  PubMed  Google Scholar 

  66. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future: The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44(Database Issue):D279–D285

    Article  CAS  PubMed  Google Scholar 

  67. Buchan DWA, Minneci F, Nugent TCO, Bryson K, Jones DT (2013) Scalable web services for the PSIPRED Protein Analysis Workbench. Nucleic Acids Res 41(W1):W340–W348

    Article  Google Scholar 

  68. Söding J, Biegert A, Lupas AN (2005) The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res 33(Web Server issue):W244–W248

    Article  PubMed  PubMed Central  Google Scholar 

  69. Zagotta WN, Olivier NB, Black KD, Young EC, Olson R, Gouaux JE (2003) Structural basis for modulation and agonist specificity of HCN pacemaker channels. Nature 425:200–205

    Article  CAS  PubMed  Google Scholar 

  70. Brelidze TI, Carlson AE, Sankaran B, Zagotta WN (2012) Structure of the carboxy-terminal region of a KCNH channel. Nature 481:530–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Guda P, Bourne PE, Guda C (2007) Conserved motifs in voltage-sensing and pore-forming modules of voltage-gated ion channel proteins. Biochem Biophys Res Commun 352(2):292–298

    Article  CAS  PubMed  Google Scholar 

  72. Laimer J, Hofer H, Fritz M, Wegenkittl S, Lackner P (2015) MAESTRO--multi agent stability prediction upon point mutations. BMC Bioinformatics 16:116. doi:10.1186/s12859-015-0548-6

    Article  PubMed  PubMed Central  Google Scholar 

  73. Wriggers W (2012) Conventions and workflows for using situs. Acta Cryst D 68:344–351

    Article  CAS  Google Scholar 

  74. Xu X, Yan C, Wohlhueter R, Ivanov I (2015) Integrative modeling of macromolecular assemblies from low to near-atomic resolution. Comput Struct Biotechnol J 13:492–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liao M, Cao E, Julius D, Cheng Y (2013) Structure of the TRPV1 ion channel determined by electron cryo-microscopy. Nature 504(7478):107–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tao X, Hite RK, MacKinnon R (2016) Cryo-EM structure of the open high-conductance Ca2+-activated K+ channel. Nature 541:46

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

Olfat Malak wishes to personally thank Mrs. Line Pomaret for her generous support. The authors would like to thank Ms. Lisa Trifonova for proofreading the manuscript. This work was funded by the Kolmogorov program of the Partenariat Hubert Curien (35503SC) for Gildas Loussouarn and Olfat Malak. Olfat Malak is a laureate of the Line Pomaret-Delalande prize of the Fondation pour la Recherche Médicale (PLP20141031304; FRM). Molecular modeling experiments were supported by the Ministry of science and education of the Russian Federation (RFMEFI61615X0044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga S. Sokolova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Novoseletsky, V., Malak, O.A., Loussouarn, G., Sokolova, O.S. (2018). Building Atomic Models of the Ion Channels Based on Low Resolution Electron Microscopy Maps and Homology Modeling. In: Shyng, SL., Valiyaveetil, F., Whorton, M. (eds) Potassium Channels. Methods in Molecular Biology, vol 1684. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7362-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7362-0_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7361-3

  • Online ISBN: 978-1-4939-7362-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics