Skip to main content

Ion Binding to Transport Proteins using Isothermal Titration Calorimetry

  • Protocol
  • First Online:
Potassium Channels

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1684))

Abstract

Isothermal titration calorimetry (ITC) is an emerging, label-free technology used to measure ligand binding to membrane proteins. This technology utilizes a titration calorimeter to measure the heat exchange upon ligands binding to proteins, the magnitude of which is based on the overall enthalpy of the reaction. In this protocol, the steps we and others use to measure ion binding to ion transport proteins are described.

The original version of this chapter was revised. An erratum to this chapter can be found at DOI 10.1007/978-1-4939-7362-0_25

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Zhou Y, MacKinnon R (2003) The occupancy of ions in the K+ selectivity filter: charge balance and coupling of ion binding to a protein conformational change underlie high conduction rates. J Mol Biol 333(5):965–975

    Article  CAS  PubMed  Google Scholar 

  2. Alam A, Jiang Y (2009) Structural analysis of ion selectivity in the NaK channel. Nat Struct Mol Biol 16(1):35–41

    Article  CAS  PubMed  Google Scholar 

  3. Ye S, Li Y, Jiang Y (2010) Novel insights into K+ selectivity from high-resolution structures of an open K+ channel pore. Nat Struct Mol Biol 17(8):1019–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sauer DB et al (2013) Sodium and potassium competition in potassium-selective and non-selective channels. Nat Commun 4:2721

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bhate MP et al (2010) Conformational dynamics in the selectivity filter of KcsA in response to potassium ion concentration. J Mol Biol 401(2):155–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ader C et al (2009) Coupling of activation and inactivation gate in a K+-channel: potassium and ligand sensitivity. EMBO J 28(18):2825–2834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Krishnan MN et al (2005) Functional role and affinity of inorganic cations in stabilizing the tetrameric structure of the KcsA K+ channel. J Gen Physiol 126(3):271–283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Renart ML et al (2006) Effects of conducting and blocking ions on the structure and stability of the potassium channel KcsA. J Biol Chem 281(40):29905–29915

    Article  CAS  PubMed  Google Scholar 

  9. Neyton J, Miller C (1988) Potassium blocks barium permeation through a calcium-activated potassium channel. J Gen Physiol 92(5):549–567

    Article  CAS  PubMed  Google Scholar 

  10. Williams M, Daviter T (eds) (2013) Protein-ligand interactions. Humana Press, Totowa, NJ

    Google Scholar 

  11. Cantor CR, Schimmel PR (1980) Biophysical chemistry. W.H. Freeman and Company, New York, NY

    Google Scholar 

  12. Lockless SW, Zhou M, MacKinnon R (2007) Structural and thermodynamic properties of selective ion binding in a K+ channel. PLoS Biol 5(5):e121

    Article  PubMed  PubMed Central  Google Scholar 

  13. Liu S, Bian X, Lockless SW (2012) Preferential binding of K+ ions in the selectivity filter at equilibrium explains high selectivity of K+ channels. J Gen Physiol 140(6):671–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu S, Lockless SW (2013) Equilibrium selectivity alone does not create K+-selective ion conduction in K+ channels. Nat Commun 4:2746

    PubMed  Google Scholar 

  15. Picollo A et al (2009) Basis of substrate binding and conservation of selectivity in the CLC family of channels and transporters. Nat Struct Mol Biol 16(12):1294–1301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lim HH, Stockbridge RB, Miller C (2013) Fluoride-dependent interruption of the transport cycle of a CLC Cl-/H+ antiporter. Nat Chem Biol 9(11):721–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Picollo A et al (2012) Synergistic substrate binding determines the stoichiometry of transport of a prokaryotic H(+)/Cl(-) exchanger. Nat Struct Mol Biol 19(5):525–531. S1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Brammer AE, Stockbridge RB, Miller C (2014) F-/Cl- selectivity in CLCF-type F-/H+ antiporters. J Gen Physiol 144(2):129–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Reyes N, Oh S, Boudker O (2013) Binding thermodynamics of a glutamate transporter homolog. Nat Struct Mol Biol 20(5):634–640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ehrnstorfer IA et al (2014) Crystal structure of a SLC11 (NRAMP) transporter reveals the basis for transition-metal ion transport. Nat Struct Mol Biol 21(11):990–996

    Article  CAS  PubMed  Google Scholar 

  21. Piscitelli CL, Krishnamurthy H, Gouaux E (2010) Neurotransmitter/sodium symporter orthologue LeuT has a single high-affinity substrate site. Nature 468(7327):1129–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wiseman T et al (1989) Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Anal Biochem 179(1):131–137

    Article  CAS  PubMed  Google Scholar 

  23. Sigurskjold BW (2000) Exact analysis of competition ligand binding by displacement isothermal titration calorimetry. Anal Biochem 277(2):260–266

    Article  CAS  PubMed  Google Scholar 

  24. Malvern (2014) MicroCal iTC200 system user manual. Malvern, Malvern

    Google Scholar 

  25. Freiburger LA, Auclair K, Mittermaier AK (2009) Elucidating protein binding mechanisms by variable-c ITC. ChemBioChem 10(18):2871–2873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Freire E, Schon A, Velazquez-Campoy A (2009) Isothermal titration calorimetry: general formalism using binding polynomials. Methods Enzymol 455:127–155

    Article  CAS  PubMed  Google Scholar 

  27. Heerklotz HH, Binder H, Epand RM (1999) A “release” protocol for isothermal titration calorimetry. Biophys J 76(5):2606–2613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Turnbull WB, Daranas AH (2003) On the value of c: can low affinity systems be studied by isothermal titration calorimetry? J Am Chem Soc 125(48):14859–14866

    Article  CAS  PubMed  Google Scholar 

  29. Tellinghuisen J (2008) Isothermal titration calorimetry at very low c. Anal Biochem 373(2):395–397

    Article  CAS  PubMed  Google Scholar 

  30. Tellinghuisen J (2016) Analysis of multitemperature isothermal titration calorimetry data at very low c: global beats van’t Hoff. Anal Biochem 513:43–46

    Article  CAS  PubMed  Google Scholar 

  31. Mizoue LS, Tellinghuisen J (2004) The role of backlash in the “first injection anomaly” in isothermal titration calorimetry. Anal Biochem 326(1):125–127

    Article  CAS  PubMed  Google Scholar 

  32. Egawa T et al (2007) Method for determination of association and dissociation rate constants of reversible bimolecular reactions by isothermal titration calorimeters. Anal Chem 79(7):2972–2978

    Article  CAS  PubMed  Google Scholar 

  33. Burnouf D et al (2012) kinITC: a new method for obtaining joint thermodynamic and kinetic data by isothermal titration calorimetry. J Am Chem Soc 134(1):559–565

    Article  CAS  PubMed  Google Scholar 

  34. Velazquez-Campoy A, Freire E (2006) Isothermal titration calorimetry to determine association constants for high-affinity ligands. Nat Protoc 1(1):186–191

    Article  CAS  PubMed  Google Scholar 

  35. Bian X, Lockless SW (2016) Preparation to minimize buffer mismatch in isothermal titration calorimetry experiments. Anal Chem 88(10):5549–5553

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by The Welch Foundation grant A-1742 and Texas A&M Startup Funds to S.W.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve W. Lockless .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Table S1

(XLSX 26 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Liu, S., Lockless, S.W. (2018). Ion Binding to Transport Proteins using Isothermal Titration Calorimetry. In: Shyng, SL., Valiyaveetil, F., Whorton, M. (eds) Potassium Channels. Methods in Molecular Biology, vol 1684. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7362-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7362-0_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7361-3

  • Online ISBN: 978-1-4939-7362-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics