Skip to main content

Site-Directed Unnatural Amino Acid Mutagenesis to Investigate Potassium Channel Pharmacology in Xenopus laevis Oocytes

  • Protocol
  • First Online:
Potassium Channels

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1684))

Abstract

Unnatural amino acid mutagenesis is a useful tool enabling detailed investigation of ion channel structure-function relationships and pharmacology. Methods have been developed to apply this technique to different heterologous systems for electrophysiological studies, with each system offering unique advantages and limitations. Synthesis of aminoacylated-tRNA followed by injection into Xenopus laevis oocytes is beneficial because it allows for the incorporation of a wide range of unnatural sidechains, including amino acids with subtle structural differences. Here, we describe a protocol for unnatural amino acid mutagenesis implemented in our lab to study the pharmacology of KCNQ voltage-gated potassium channel opener compounds. This protocol should be applicable to other ion channels and receptor types amenable for functional studies in Xenopus laevis oocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Dougherty DA, Van Arnam EB (2014) In vivo incorporation of non-canonical amino acids by using the chemical aminoacylation strategy: a broadly applicable mechanistic tool. Chembiochem 15:1710–1720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pless SA, Ahern CA (2013) Unnatural amino acids as probes of ligand-receptor interactions and their conformational consequences. Annu Rev Pharmacol Toxicol 53:211–229

    Article  CAS  PubMed  Google Scholar 

  3. Neumann H, Wang K, Davis L, Garcia-Alai M, Chin JW (2010) Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 464:441–444

    Article  CAS  PubMed  Google Scholar 

  4. Noren CJ, Anthony-Cahill SJ, Griffith MC, Schultz PG (1989) A general method for site-specific incorporation of unnatural amino acids into proteins. Science 244:182–188

    Article  CAS  PubMed  Google Scholar 

  5. Cornish VW, Benson DR, Altenbach CA, Hideg K, Hubbell WL, Schultz PG (1994) Site-specific incorporation of biophysical probes into proteins. Proc Natl Acad Sci U S A 91(8):2910–2914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nowak MW, Gallivan JP, Silverman SK, Labarca CG, Dougherty DA, Lester HA (1998) In vivo incorporation of unnatural amino acids into ion channels in Xenopus oocyte expression system. Methods Enzymol 293:504–529

    Article  CAS  PubMed  Google Scholar 

  7. Davis L, Chin JW (2012) Designer proteins: applications of genetic code expansion in cell biology. Nat Rev Mol Cell Biol 13:168–182

    CAS  PubMed  Google Scholar 

  8. Pless SA, Niciforovic AP, Galpin JD, Nunez JJ, Kurata HT, Ahern CA (2013) A novel mechanism for fine-tuning open-state stability in a voltage-gated potassium channel. Nat Commun 4:1784

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pless SA, Galpin JD, Niciforovic AP, Kurata HT, Ahern CA (2013) Hydrogen bonds as molecular timers for slow inactivation in voltage-gated potassium channels. elife 2:e01289

    Article  PubMed  PubMed Central  Google Scholar 

  10. Pless SA, Elstone FD, Niciforovic AP et al (2014) Asymmetric functional contributions of acidic and aromatic side chains in sodium channel voltage-sensor domains. J Gen Physiol 143:645–656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pless SA, Galpin JD, Niciforovic AP, Ahern CA (2011) Contributions of counter-charge in a potassium channel voltage-sensor domain. Nat Chem Biol 7:617–623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tao X, Lee A, Limapichat W, Dougherty DA, MacKinnon R (2010) A gating charge transfer center in voltage sensors. Science 328:67–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gleitsman KR, Lester HA, Dougherty DA (2009) Probing the role of backbone hydrogen bonding in a critical beta sheet of the extracellular domain of a cys-loop receptor. Chembiochem 10(8):1385–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pless SA, Galpin JD, Frankel A, Ahern CA (2011) Molecular basis for class Ib anti-arrhythmic inhibition of cardiac sodium channels. Nat Commun 2:351

    Article  PubMed  Google Scholar 

  15. Ahern CA, Eastwood AL, Dougherty DA, Horn R (2008) Electrostatic contributions of aromatic residues in the local anesthetic receptor of voltage-gated sodium channels. Circ Res 102:86–94

    Article  CAS  PubMed  Google Scholar 

  16. Lummis SC, McGonigle I, Ashby JA, Dougherty DA (2011) Two amino acid residues contribute to a cation-pi binding interaction in the binding site of an insect GABA receptor. J Neurosci 31(34):12371–12376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Xiu X, Puskar NL, Shanata JA, Lester HA, Dougherty DA (2009) Nicotine binding to brain receptors requires a strong cation-pi interaction. Nature 458:534–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lange W, Geissendorfer J, Schenzer A et al (2009) Refinement of the binding site and mode of action of the anticonvulsant Retigabine on KCNQ K+ channels. Mol Pharmacol 75:272–280

    Article  CAS  PubMed  Google Scholar 

  19. Wuttke TV, Seebohm G, Bail S, Maljevic S, Lerche H (2005) The new anticonvulsant retigabine favors voltage-dependent opening of the Kv7.2 (KCNQ2) channel by binding to its activation gate. Mol Pharmacol 67:1009–1017

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harley T. Kurata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Kim, R.Y., Kurata, H.T. (2018). Site-Directed Unnatural Amino Acid Mutagenesis to Investigate Potassium Channel Pharmacology in Xenopus laevis Oocytes. In: Shyng, SL., Valiyaveetil, F., Whorton, M. (eds) Potassium Channels. Methods in Molecular Biology, vol 1684. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7362-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7362-0_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7361-3

  • Online ISBN: 978-1-4939-7362-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics