Skip to main content

Patch-Clamp Recordings of the KcsA K+ Channel in Unilamellar Blisters

  • Protocol
  • First Online:
Potassium Channels

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1684))

Abstract

Patch-clamp electrophysiology is the standard technique used for the high-resolution functional measurements on ion channels. While studies using patch clamp are commonly carried out following ion channel expression in a heterologous system such as Xenopus oocytes or tissue culture cells, these studies can also be carried out using ion channels reconstituted into lipid vesicles. In this chapter, we describe the methodology for reconstituting ion channels into liposomes and the procedure for the generation of unilamellar blisters from these liposomes that are suitable for patch clamp. Here, we focus on the bacterial K+ channel KcsA, although the methodologies described in this chapter should be applicable for the functional analysis of other ion channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Hille B (2001) Ion channels of excitable membranes. Sinauer, Sunderland, MA

    Google Scholar 

  2. Stuhmer W (1998) Electrophysiologic recordings from Xenopus oocytes. Methods Enzymol 293:280–300

    Article  CAS  PubMed  Google Scholar 

  3. Thomas P, Smart TG (2005) HEK293 cell line: a vehicle for the expression of recombinant proteins. J Pharmacol Toxicol Methods 51(3):187–200

    Article  CAS  PubMed  Google Scholar 

  4. Stockbridge RB, Tsai MF (2015) Lipid reconstitution and recording of recombinant ion channels. Methods Enzymol 556:385–404

    Article  CAS  PubMed  Google Scholar 

  5. Lin CM et al (2012) Size-dependent properties of small unilamellar vesicles formed by model lipids. Langmuir 28(1):689–700

    Article  CAS  PubMed  Google Scholar 

  6. Walde P et al (2010) Giant vesicles: preparations and applications. Chembiochem 11(7):848–865

    Article  CAS  PubMed  Google Scholar 

  7. Yanagisawa M et al (2011) Oriented reconstitution of a membrane protein in a giant unilamellar vesicle: experimental verification with the potassium channel KcsA. J Am Chem Soc 133(30):11774–11779

    Article  CAS  PubMed  Google Scholar 

  8. Matulef K et al (2016) Individual ion binding sites in the K(+) channel play distinct roles in C-type inactivation and in recovery from inactivation. Structure 24(5):750–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chakrapani S, Cordero-Morales JF, Perozo E (2007) A quantitative description of KcsA gating I: macroscopic currents. J Gen Physiol 130(5):465–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Aimon S et al (2011) Functional reconstitution of a voltage-gated potassium channel in giant unilamellar vesicles. PLoS One 6(10):e25529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Martinac B et al (2014) Bacterial mechanosensitive channels: models for studying mechanosensory transduction. Antioxid Redox Signal 20(6):952–969

    Article  CAS  PubMed  Google Scholar 

  12. Martinac B et al (2010) Studying mechanosensitive ion channels using liposomes. Methods Mol Biol 606:31–53

    Article  CAS  PubMed  Google Scholar 

  13. Battle AR et al (2009) Rapid and improved reconstitution of bacterial mechanosensitive ion channel proteins MscS and MscL into liposomes using a modified sucrose method. FEBS Lett 583(2):407–412

    Article  CAS  PubMed  Google Scholar 

  14. Mahendran KR et al (2010) Permeation of antibiotics through Escherichia coli OmpF and OmpC porins: screening for influx on a single-molecule level. J Biomol Screen 15(3):302–307

    Article  CAS  PubMed  Google Scholar 

  15. Kreir M et al (2008) Rapid screening of membrane protein activity: electrophysiological analysis of OmpF reconstituted in proteoliposomes. Lab Chip 8(4):587–595

    Article  CAS  PubMed  Google Scholar 

  16. Cao E et al (2013) TRPV1 channels are intrinsically heat sensitive and negatively regulated by phosphoinositide lipids. Neuron 77(4):667–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kahya N et al (2003) Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy. J Biol Chem 278(30):28109–28115

    Article  CAS  PubMed  Google Scholar 

  18. Nikolaus J et al (2010) Hemagglutinin of influenza virus partitions into the nonraft domain of model membranes. Biophys J 99(2):489–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Angelova MI, Tsoneva I (1999) Interactions of DNA with giant liposomes. Chem Phys Lipids 101(1):123–137

    Article  CAS  PubMed  Google Scholar 

  20. Kovacic J, Bozic B, Svetina S (2010) Budding of giant unilamellar vesicles induced by an amphitropic protein beta2-glycoprotein I. Biophys Chem 152(1-3):46–54

    Article  CAS  PubMed  Google Scholar 

  21. Staneva G et al (2005) Detergents induce raft-like domains budding and fission from giant unilamellar heterogeneous vesicles: a direct microscopy observation. Chem Phys Lipids 136(1):55–66

    Article  CAS  PubMed  Google Scholar 

  22. Jorgensen IL, Kemmer GC, Pomorski TG (2016) Membrane protein reconstitution into giant unilamellar vesicles: a review on current techniques. Eur Biophys J 46(2):103–119

    Article  PubMed  Google Scholar 

  23. Varnier A et al (2010) A simple method for the reconstitution of membrane proteins into giant unilamellar vesicles. J Membr Biol 233(1-3):85–92

    Article  CAS  PubMed  Google Scholar 

  24. Garten M et al (2015) Reconstitution of a transmembrane protein, the voltage-gated ion channel, KvAP, into giant unilamellar vesicles for microscopy and patch clamp studies. J Vis Exp 95:52281

    Google Scholar 

  25. Manley S, Gordon VD (2008) Making giant unilamellar vesicles via hydration of a lipid film. Curr Protoc Cell Biol Chapter 24:Unitas 24.3

    Google Scholar 

  26. Collins MD, Gordon SE (2013) Giant liposome preparation for imaging and patch-clamp electrophysiology. J Vis Exp 76:PMID: 23851612

    Google Scholar 

  27. Reeves JP, Dowben RM (1969) Formation and properties of thin-walled phospholipid vesicles. J Cell Physiol 73(1):49–60

    Article  CAS  PubMed  Google Scholar 

  28. Akashi K et al (1996) Preparation of giant liposomes in physiological conditions and their characterization under an optical microscope. Biophys J 71(6):3242–3250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Akashi K et al (1998) Formation of giant liposomes promoted by divalent cations: critical role of electrostatic repulsion. Biophys J 74(6):2973–2982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tsumoto K et al (2009) Efficient formation of giant liposomes through the gentle hydration of phosphatidylcholine films doped with sugar. Colloids Surf B Biointerfaces 68(1):98–105

    Article  CAS  PubMed  Google Scholar 

  31. Wesolowska O et al (2009) Giant unilamellar vesicles – a perfect tool to visualize phase separation and lipid rafts in model systems. Acta Biochim Pol 56(1):33–39

    PubMed  Google Scholar 

  32. Delcour AH et al (1989) Modified reconstitution method used in patch-clamp studies of Escherichia coli ion channels. Biophys J 56(3):631–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Doeven MK et al (2005) Distribution, lateral mobility and function of membrane proteins incorporated into giant unilamellar vesicles. Biophys J 88(2):1134–1142

    Article  CAS  PubMed  Google Scholar 

  34. Keller BU et al (1988) Single channel recordings of reconstituted ion channel proteins: an improved technique. Pflugers Arch 411(1):94–100

    Article  CAS  PubMed  Google Scholar 

  35. Riquelme G et al (1990) Giant liposomes: a model system in which to obtain patch-clamp recordings of ionic channels. Biochemistry 29(51):11215–11222

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This research was supported by a grant from the NIH (GM087546) to F.I.V.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis I. Valiyaveetil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Cite this protocol

Matulef, K., Valiyaveetil, F.I. (2018). Patch-Clamp Recordings of the KcsA K+ Channel in Unilamellar Blisters. In: Shyng, SL., Valiyaveetil, F., Whorton, M. (eds) Potassium Channels. Methods in Molecular Biology, vol 1684. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7362-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7362-0_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7361-3

  • Online ISBN: 978-1-4939-7362-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics