Skip to main content

High-Content Screening Approaches That Minimize Confounding Factors in RNAi, CRISPR, and Small Molecule Screening

  • Protocol
  • First Online:
High Content Screening

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1683))

Abstract

Screening arrayed libraries of reagents, particularly small molecules began as a vehicle for drug discovery, but the in last few years it has become a cornerstone of biological investigation, joining RNAi and CRISPR as methods for elucidating functional relationships that could not be anticipated, and illustrating the mechanisms behind basic and disease biology, and therapeutic resistance. However, these approaches share some common challenges, especially with respect to specificity or selectivity of the reagents as they are scaled to large protein families or the genome. High-content screening (HCS) has emerged as an important complement to screening, mostly the result of a wide array of specific molecular events, such as protein kinase and transcription factor activation, morphological changes associated with stem cell differentiation or the epithelial-mesenchymal transition of cancer cells. Beyond the range of cellular events that can be screened by HCS, image-based screening introduces new processes for differentiating between specific and nonspecific effects on cells. This chapter introduces these complexities and discusses strategies available in image-based screening that can mitigate the challenges they can bring to screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    Article  CAS  Google Scholar 

  2. Lee SS, Lee RY, Fraser AG, Kamath RS, Ahringer J, Ruvkun G (2003) A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet 33:40–48

    Article  CAS  Google Scholar 

  3. Pothof J, van Haaften G, Thijssen K, Kamath RS, Fraser AG, Ahringer J et al (2003) Identification of genes that protect the C. elegans genome against mutations by genome-wide RNAi. Genes Dev 17:443–448

    Article  CAS  Google Scholar 

  4. Berns K, Hijmans EM, Mullenders J, Brummelkamp TR, Velds A, Heimerikx M et al (2004) A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428:431–437

    Article  CAS  Google Scholar 

  5. Willingham AT, Deveraux QL, Hampton GM, Aza-Blanc P (2004) RNAi and HTS: exploring cancer by systematic loss-of-function. Oncogene 23:8392–8400

    Article  CAS  Google Scholar 

  6. Schulte J, Sepp KJ, Wu C, Hong P, Littleton JT (2011) High-content chemical and RNAi screens for suppressors of neurotoxicity in a Huntington’s disease model. PLoS One 6:e23841

    Article  CAS  Google Scholar 

  7. Agrotis A, Ketteler R (2015) A new age in functional genomics using CRISPR/Cas9 in arrayed library screening. Front Genet 6:e300. doi:10.3389/fgene.2015.00300

    Article  Google Scholar 

  8. Munoz DM, Cassiani PJ, Li L, Billy E, Korn JM, Jones MD et al (2016) CRISPR screens provide a comprehensive assessment of cancer vulnerabilities but generate false-positive hits for highly amplified genomic regions. Cancer Discov 6:900–913

    Article  CAS  Google Scholar 

  9. Li CX, Parker A, Menocal E, Xiang S, Borodyansky L, Fruehauf JH (2006) Delivery of RNAi interference. Cell Cycle 5:2103–2109

    Article  CAS  Google Scholar 

  10. Echeverri CJ, Perrimon N (2006) High-throughput RNAi screening in cultured cells: a user’s guide. Nat Rev Genet 7:373–384

    Article  CAS  Google Scholar 

  11. Hannon GJ (ed) (2003) RNAi: a guide to gene silencing, 1st edn. Cold Spring Harbor Press, Cold Spring Harbor, NY

    Google Scholar 

  12. Rodriguez-Barrueco R, Marshall N, Silva JM (2013) Pooled shRNA screenings: experimental approach. Methods Mol Biol 980:353–370

    Article  CAS  Google Scholar 

  13. Blakely K, Ketela T, Moffat J (2011) Pooled lentiviral shRNA screening for functional genomics in mammalian cells. Methods Mol Biol 781:161–182

    Article  CAS  Google Scholar 

  14. Jackson AL, Linsley PS (2004) Noise amidst the silence: off-target effects of siRNAs? Trends Genet 20:521–524

    Article  CAS  Google Scholar 

  15. Lin X, Ruan X, Anderson MG, McDowell JA, Kroeger PE, Fesik SW et al (2005) siRNA-mediated off-target gene silencing triggered by a 7 nt complementation. Nucleic Acids Res 33:4527–4535

    Article  CAS  Google Scholar 

  16. Birmingham A, Anderson EM, Reynolds A, Ilsley-Tyree D, Leake D, Fedorov Y et al (2006) 3′ UTR seed matches, but not overall identity, are associated with RNAi off-targets. Nat Methods 3:199–204

    Article  CAS  Google Scholar 

  17. Mohr S, Bakal C, Perrimon N (2010) Genomic screening with RNAi: results and challenges. Annu Rev Biochem 79:37–64

    Article  CAS  Google Scholar 

  18. Hornung V, Guenthner-Biller M, Bourquin C, Ablasser A, Schlee M, Uematsu S et al (2005) Sequence-specific potent induction of IFN-alpha by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nat Med 11:263–270

    Article  CAS  Google Scholar 

  19. LaPan P, Zhang J, Pan J, Haney S (2008) Quantitative optimization of reverse transfection conditions for 384-well siRNA library screening. Assay Drug Dev Technol 6:683–691

    Article  CAS  Google Scholar 

  20. Sontheimer EJ, Carthew RW (2005) Silence from within: endogenous siRNAs and miRNAs. Cell 122:9–12

    Article  CAS  Google Scholar 

  21. Tang G (2005) siRNA and miRNA: an insight into RISCs. Trends Biochem Sci 30:106–114

    Article  CAS  Google Scholar 

  22. Jackson AL, Burchard J, Schelter J, Chau BN, Cleary M, Lim L et al (2006) Widespread siRNA "off-target" transcript silencing mediated by seed region sequence complementarity. RNA 12:1179–1187

    Article  CAS  Google Scholar 

  23. Jackson AL, Burchard J, Schelter J, Chau BN, Cleary M, Lim L et al (2006) Widespread siRNA "off-target" transcript silencing mediated by seed region sequence complementarity. RNA 12:1–9

    Article  Google Scholar 

  24. Birmingham A, Selfors LM, Forster T, Wrobel D, Kennedy CJ, Shanks E et al (2009) Statistical methods for analysis of high-throughput RNA interference screens. Nat Methods 6:569–575

    Article  CAS  Google Scholar 

  25. Peters EC, Gray NS (2007) Chemical proteomics identifies unanticipated targets of clinical kinase inhibitors. ACS Chem Biol 2:661–664

    Article  CAS  Google Scholar 

  26. Baell J, Walters MA (2014) Chemical con artists foil drug discovery. Nature 513:481–483

    Article  CAS  Google Scholar 

  27. Barrangou R, Birmingham A, Wiemann S, Beijersbergen RL, Hornung V, Smith AM (2015) Advances in CRISPR-Cas9 genome engineering: lessons learned from RNA interference. Nucleic Acids Res 43:3407–3419

    Article  CAS  Google Scholar 

  28. Mali P, Yang L, Xia Y (2013) RNA-guided human gene engineering vial Cas9. Science 339:823–826

    Article  CAS  Google Scholar 

  29. Tan J, Martin SE (2016) Validation of synthetic CRISPR reagents as a tool for arrayedfunctional genomic screening. PLoS One 11:e0168968

    Article  Google Scholar 

  30. Consortium TE (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74

    Article  Google Scholar 

  31. Haney SA (ed) (2008) High content screening: science, techniques and applications. Wiley, Hoboken, NJ

    Google Scholar 

  32. Inglese J (ed) (2006) Measuring biological responses with automated microscopy. Academic, New York, NY

    Google Scholar 

  33. Taylor DL, Haskins JR, Giuliano K (2006) High content screening: a powerful approach to systems cell biology and drug discovery. Humana Press, New York, NY

    Google Scholar 

  34. Singh S, Carpenter AE, Genovesio A (2014) Increasing the content of high-content screening: an overview. J Biomol Screen 19:640–650

    Article  Google Scholar 

  35. Boland MV, Markey MK, Murphy RF (1998) Automated recognition of patterns characteristic of subcellular structures in fluorescence microscopy images. Cytometry 33:366–375

    Article  CAS  Google Scholar 

  36. Lapan P, Zhang J, Pan J, Hill A, Haney SA (2008) Single cell cytometry of protein function in RNAi treated cells and in native populations. BMC Cell Biol 9:43

    Article  Google Scholar 

  37. Kiger AA, Baum B, Jones S, Jones MR, Coulson A, Echeverri C et al (2003) A functional genomic analysis of cell morphology using RNA interference. J Biol 2:27

    Article  CAS  Google Scholar 

  38. Truong TV, Supatto W (2011) Toward high-content/high-throughput imaging and analysis of embryonic morphogenesis. Genesis 49:555–569

    Article  Google Scholar 

  39. Chua KN, Sim WJ, Racine V, Lee SY, Goh BC, Thiery JP (2012) A cell-based small molecule screening method for identifying inhibitors of epithelial-mesenchymal transition in carcinoma. PLoS One 7:e33183

    Article  CAS  Google Scholar 

  40. Azorsa DO, Robeson RH, Frost D, Meec hoovet B, Brautigam GR, Dickey C et al (2010) High-content siRNA screening of the kinome identifies kinases involved in Alzheimer's disease-related tau hyperphosphorylation. BMC Genomics 11:25

    Article  Google Scholar 

  41. Arora S, Beaudry C, Bisanz KM, Sima C, Kiefer JA, Azorsa DO (2010) A high-content RNAi-screening assay to identify modulators of cholesterol accumulation in Niemann-Pick type C cells. Assay Drug Dev Technol 8:295–320

    Article  CAS  Google Scholar 

  42. Haney SA, Zhao J, Tiwari S, Eng K, Guey LT, Tien ES (2013) RNAi screening in primary human hepatocytes of genes implicated in genome-wide association studies for roles in type 2 diabetes identifies roles for CAMK1D and CDKAL1, among others, in hepatic glucose regulation. PLoS One 8(6):e64946

    Article  CAS  Google Scholar 

  43. Giuliano K (2006) Optimizing the integration of immunoreagents and fluorecent probes for multiplexed high content screening assays. Methods Mol Biol 356:189–195

    Article  Google Scholar 

  44. Howell BJ, Lee S, Sepp-Lorenzino L (2006) Development and implementation of multiplexed cell-based imaging assays. Methods Enzymol 414:284–300

    Article  CAS  Google Scholar 

  45. Perlman ZE, Slack MD, Feng Y, Mitchison TJ, Wu LF, Altschuler SJ (2004) Multidimensional drug profiling by automated microscopy. Science 306:1194–1198

    Article  CAS  Google Scholar 

  46. Adams CL, Kutsyy V, Coleman DA, Cong G, Crompton AM, Elias KA et al (2006) Compound classification using image-based cellular phenotypes. In: Inglese J (ed) Methods in enzymology: measuring biological responses with automated microscopy, vol 414. Academic, New York, pp 440–468

    Chapter  Google Scholar 

  47. Tencza SB, Sipe MA (2004) Detection and classification of threat agents via high-content assays of mammalian cells. J Appl Toxicol 24:371–377

    Article  CAS  Google Scholar 

  48. Tolosa L, Pinto S, Donato MT, Lahoz A, Castell JV, O’Connor JE et al (2012) Development of a multiparametric cell-based protocol to screen and classify the hepatotoxicity potential of drugs. Toxicol Sci 127:187–198

    Article  CAS  Google Scholar 

  49. Abraham VC, Towne DL, Waring JF, Warrior U, Burns DJ (2008) Application of a high-content multiparameter cytotoxicity assay to prioritize compounds based on toxicity potential in humans. J Biomol Screen 13:527–537

    Article  CAS  Google Scholar 

  50. Erdmann G, Volz C, Boutros M (2012) Systematic approaches to dissect biological processes in stem cells by image-based screening. Biotechnol J 7:768–778

    Article  CAS  Google Scholar 

  51. Wang J, Zhou X, Li F, Bradley PL, Chang SF, Perrimon N et al (2009) An image score inference system for RNAi genome-wide screening based on fuzzy mixture regression modeling. J Biomed Inform 42(1):32–40

    Article  CAS  Google Scholar 

  52. Misselwitz B, Strittmatter G, Periaswamy B, Schlumberger MC, Rout S, Horvath P et al (2010) Enhanced CellClassifier: a multi-class classification tool for microscopy images. BMC Bioinformatics 11:30

    Article  Google Scholar 

  53. Jones TR, Kang IH, Wheeler DB, Lindquist RA, Papallo A, Sabatini DM et al (2008) CellProfiler analyst: data exploration and analysis software for complex image-based screens. BMC Bioinformatics 9:482

    Article  Google Scholar 

  54. Tallarida RJ (2010) Combination analysis. Adv Exp Med Biol 678:133–137

    Article  Google Scholar 

  55. Berns K, Bernards R (2012) Understanding resistance to targeted cancer drugs through loss of function genetic screens. Drug Resist Updat 15:268–275

    Article  CAS  Google Scholar 

  56. Whitehurst AW, Bodemann BO, Cardenas J, Ferguson D, Girard L, Peyton M et al (2007) Synthetic lethal screen identification of chemosensitizer loci in cancer cells. Nature 446:815–819

    Article  CAS  Google Scholar 

  57. Sachse C, Krausz E, Kronke A, Hannus M, Walsh A, Grabner A et al (2005) High-throughput RNA interference strategies for target discovery and validation by using synthetic short interfering RNAs: functional genomics investigations of biological pathways. Methods Enzymol 392:242–277

    Article  CAS  Google Scholar 

  58. Beske O, Guo J, Li J, Bassoni D, Bland K, Marciniak H et al (2004) A novel encoded particle technology that enables simultaneous interrogation of multiple cell types. J Biomol Screen 9:173–185

    Article  CAS  Google Scholar 

  59. Zhang J-H, Chung TDY, Oldenberg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4:67–73

    Article  CAS  Google Scholar 

  60. Kozak K, Csucs G (2010) Kernalized Z' factor in multiparametric screening technology. RNA Biol 7:615–620

    Article  CAS  Google Scholar 

  61. Snijder B, Sacher R, Rämö P, Liberali P, Mench K, Wolfrum N et al (2011) Single-cell analysis of population context advances RNAi screening at multiple levels. Mol Syst Biol 8:579

    Google Scholar 

  62. Sittampalam GS, Coussens NP, Brimacombe K, Grossman A, Arkin M, Auld D, Austin C, Baell J, Bejcek B, Chung TDY, Dahlin JL, Devanaryan V, Foley TL, Glicksman M, Hall MD, Hass JV, Inglese J, Iversen PW, Kahl SD, Kales SC, Lal-Nag M, Li Z, McGee J, McManus O, Riss T, Trask OJ Jr., Weidner JR, Xia M, Xu X (eds) (2004–2012) Assay Guidance Manual. Eli Lilly & Company and the National Center for Advancing Translational Sciences, Bethesda, MD. PMID: 23469374

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A. Haney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Haney, S. (2018). High-Content Screening Approaches That Minimize Confounding Factors in RNAi, CRISPR, and Small Molecule Screening. In: Johnston, P., Trask, O. (eds) High Content Screening. Methods in Molecular Biology, vol 1683. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7357-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7357-6_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7355-2

  • Online ISBN: 978-1-4939-7357-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics