Skip to main content

Guidelines for Microplate Selection in High Content Imaging

  • Protocol
  • First Online:
High Content Screening

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1683))

Abstract

Since the inception of commercialized automated high content screening (HCS) imaging devices in the mid to late 1990s, the adoption of media vessels typically used to house and contain biological specimens for interrogation has transitioned from microscope slides and petri dishes into multi-well microtiter plates called microplates. The early 96- and 384-well microplates commonly used in other high-throughput screening (HTS) technology applications were often not designed for optical imaging. Since then, modifications and the use of next-generation materials with improved optical clarity have enhanced the quality of captured images, reduced autofocusing failures, and empowered the use of higher power magnification objectives to resolve fine detailed measurements at the subcellular pixel level. The plethora of microplates and their applications requires practitioners of high content imaging (HCI) to be especially diligent in the selection and adoption of the best plates for running longitudinal studies or larger screening campaigns. While the highest priority in experimental design is the selection of the biological model, the choice of microplate can alter the biological response and ultimately may change the experimental outcome. This chapter will provide readers with background, troubleshooting guidelines, and considerations for choosing an appropriate microplate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. http://www.wellplate.com/ansi-slas-microplate-standards/ (as of April 2016)

  2. http://www.slas.org/resources/information/industry-standards/ (as of April 2016)

  3. ANSI/SLAS 1–2004: Microplates — Footprint Dimensions → http://www.slas.org/default/assets/File/ANSI_SLAS_1-2004_FootprintDimensions.pdf

  4. ANSI/SLAS 2–2004: Microplates — height dimensions

    Google Scholar 

  5. ANSI/SLAS 3–2004: Microplates — bottom outside flange dimensions

    Google Scholar 

  6. ANSI/SLAS 4–2004: Microplates — well positions

    Google Scholar 

  7. ANSI/SLAS 6–2012: Microplates — well bottom elevation

    Google Scholar 

  8. Vinci M, Gowan S, Boxall F et al (2012) Advances in establishment and analysis of three dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol 10:29

    Article  CAS  Google Scholar 

  9. Kohara T (1996) Development of new cyclic olefin polymers for optical uses. Macromol Symp 101(1):571–579

    Article  CAS  Google Scholar 

  10. Niles WD, Coassin PJ (2008) Cyclic olefin polymers: innovative materials for high-density multiwell plates. Assay Drug Dev Technol 6(4):577–590

    Article  CAS  Google Scholar 

  11. Amstein CF, Hartman PA (1975) Adaption of plastic surfaces for tissue culture by glow discharge. J Clin Microbiol 2:46–54

    CAS  Google Scholar 

  12. Sultanova N, Kasarova S, Nikolov I (2009) Dispersion properties of optical polymers. Acta Phys Pol A 116:585–587

    Article  CAS  Google Scholar 

  13. Bach H, Neuroth N (1998) The properties of optical glass, 2nd edn. Springer, New York. ISBN: 978-3-642-63349-2

    Google Scholar 

  14. Gliemeroth G (1982) Optical properties of optical glass. Proceedings of the conference on optical properties of glass and optical materials. J Non-Cryst Solids 47(1):57–68

    Article  CAS  Google Scholar 

  15. Yang CZ, Yaniger SI, Jordan VC, Klein DJ, Bittner GD (2011) Most plastic products release estrogenic chemicals: a potential health problem that can be solved. Environ Health Perspect 119(7):989–996

    Article  CAS  Google Scholar 

  16. Richter CA, Birnbaum LS, Farabollini F, Newbold RR, Rubin BS, Talsness CE, Vandenbergh JG, Walser-Kuntz DR, vom Saal FS. (2007) In vivo effects of bisphenol A in laboratory rodent studies. Reprod Toxicol 24(2):199–224

    Article  CAS  Google Scholar 

  17. Welshons WV, Nagel SC, vom Saal FS. (2006) Large effects from small exposures. III. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure. Endocrinology 147(6 Suppl):S56–S69

    Article  CAS  Google Scholar 

  18. Erickson BE (2008) Bisphenol A under scrutiny. Chemical and engineering news. American Chemical Society, Washington, DC, pp 36–39

    Google Scholar 

  19. Reid LM, Rojkind M (1979) New techniques for culturing differentiated cells: reconstituted basement membrane rafts. In: Jakoby WB, Pastan IH (eds) Cell culture, Methods in enzymology, Chapter 21, vol 58. Academic, New York, pp 263–278

    Chapter  Google Scholar 

  20. Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143

    Article  CAS  Google Scholar 

  21. Curtis ASG, Forrester JV, McInnes C, Lawrie F (1983) Adhesion of cells to polystyrene surfaces. J Cell Biol 97:1500–1506

    Article  CAS  Google Scholar 

  22. Ramsey WS, Hertl W, Nowlan ED, Binkowski NJ (1984) Surface treatments and cell attachment. In Vitro 20:802–808

    Article  CAS  Google Scholar 

  23. Shen M, Horbett TA (2001) The effects of surface chemistry and adsorbed proteins on monocyte/macrophage adhesion to chemically modified polystyrene surfaces. J Biomed Mater Res 57(3):336–345

    Article  CAS  Google Scholar 

  24. Mazia D, Schatten G, Sale W (1975) Adhesion of cells to surfaces coated with polylysine. Applications to electron microscopy. J Cell Biol 66(1):198–200

    Article  CAS  Google Scholar 

  25. Xu C, Inokuma MS, Denham J, Golds K, Kundu P, Gold JD, Carpenter MK (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat Biotechnol 19(10):971–974

    Article  CAS  Google Scholar 

  26. Benton G, George J, Kleinman HK, Arnaoutova I (2009) Advancing science and technology via 3D culture on basement membrane matrix. J Cell Physiol 221(1):18–25

    Article  CAS  Google Scholar 

  27. Pierres A, Eymeric P, Baloche E, Touchard D, Benoliel A-M, Bongrand P (2003) Cell membrane alignment along adhesive surfaces: contribution of active and passive cell processes. Biophys J 84(3):2058–2070

    Article  CAS  Google Scholar 

  28. Kuntz RM, Saltzman WM (1997) Neutrophil motility in extracellular matrix gels: mesh size and adhesion affect speed of migration. Biophys J 72(3):1472–1480

    Article  CAS  Google Scholar 

  29. Hughes CS, Postovit LM, Lajoie GA (2010) Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10(9):1886–1890

    Article  CAS  Google Scholar 

  30. Arnaoutova I, George J, Kleinman HK, Benton G (2009) The endothelial cell tube formation assay on basement membrane turns 20. Angiogenesis 12(3):267–274

    Article  Google Scholar 

  31. Camci-Unal G, Nichol JW, Bae H, Tekin H, Bischoff J, Khademhosseini A (2013) Hydrogel surfaces to promote attachment and spreading of endothelial progenitor cells. J Tissue Eng Regen Med 7(5):337–347

    Article  CAS  Google Scholar 

  32. Mellati A, Dai S, Bi J, Jin B, Zhang H (2014) A biodegradable thermosensitive hydrogel with tuneable properties for mimicking three-dimensional microenvironments of stem cells. RSC Adv 4(109):63951–63961

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar J. Trask .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Trask, O.J. (2018). Guidelines for Microplate Selection in High Content Imaging. In: Johnston, P., Trask, O. (eds) High Content Screening. Methods in Molecular Biology, vol 1683. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7357-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7357-6_6

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7355-2

  • Online ISBN: 978-1-4939-7357-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics