Skip to main content

Translocation Biosensors—Versatile Tools to Probe Protein Functions in Living Cells

  • Protocol
  • First Online:
High Content Screening

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1683))

Abstract

In this chapter, you will learn how to use translocation biosensors to investigate protein functions in living cells. We here present three classes of modular protein translocation biosensors tailored to investigate: (1) signal-mediated nucleo-cytoplasmic transport, (2) protease activity, and (3) protein-protein interactions. Besides the mapping of protein function, the biosensors are also applicable to identify chemicals and/or (nano) materials modulating the respective protein activities and can also be exploited for RNAi-mediated genetic screens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Knauer SK et al (2011) Bioassays to monitor Taspase1 function for the identification of pharmacogenetic inhibitors. PLoS One 6(5):e18253

    Article  CAS  Google Scholar 

  2. Fetz V, Knauer SK, Bier C, von Kries JP, Stauber RH (2009) Translocation biosensors - cellular system integrators to dissect CRM1-dependent nuclear export by Chemicogenomics. Sensors 9:5423–5445

    Article  CAS  Google Scholar 

  3. Hua Y et al (2014) High-content positional biosensor screening assay for compounds to prevent or disrupt androgen receptor and transcriptional intermediary factor 2 protein-protein interactions. Assay Drug Dev Technol 12(7):395–418

    Article  CAS  Google Scholar 

  4. Korn K, Krausz E (2007) Cell-based high-content screening of small-molecule libraries. Curr Opin Chem Biol 11(5):503–510

    Article  CAS  Google Scholar 

  5. Lundholt BK et al (2006) A simple cell-based HTS assay system to screen for inhibitors of p53-Hdm2 protein-protein interactions. Assay Drug Dev Technol 4(6):679–688

    Article  CAS  Google Scholar 

  6. Heydorn A et al (2006) Protein translocation assays: key tools for accessing new biological information with high-throughput microscopy. Methods Enzymol 414:513–530

    Article  CAS  Google Scholar 

  7. Loechel F et al (2007) High content translocation assays for pathway profiling. Methods Mol Biol 356:401–414

    CAS  Google Scholar 

  8. Zanella F et al (2007) An HTS approach to screen for antagonists of the nuclear export machinery using high content cell-based assays. Assay Drug Dev Technol 5(3):333–341

    Article  CAS  Google Scholar 

  9. Fuller CJ, Straight AF (2010) Image analysis benchmarking methods for high-content screen design. J Microsc 238(2):145–161

    Article  CAS  Google Scholar 

  10. Zhang JH, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4(2):67–73

    Article  CAS  Google Scholar 

  11. Turner JG, Dawson J, Sullivan DM (2012) Nuclear export of proteins and drug resistance in cancer. Biochem Pharmacol 83(8):1021–1032

    Article  CAS  Google Scholar 

  12. Hutten S, Kehlenbach RH (2007) CRM1-mediated nuclear export: to the pore and beyond. Trends Cell Biol 17(4):193–201

    Article  CAS  Google Scholar 

  13. Bier C et al (2011) The Importin-alpha/Nucleophosmin switch controls Taspase1 protease function. Traffic 12(6):703–714

    Article  CAS  Google Scholar 

  14. Knauer SK et al (2006) The Survivin-Crm1 interaction is essential for chromosomal passenger complex localization and function. EMBO Rep 7(12):1259–1265

    Article  CAS  Google Scholar 

  15. Knauer SK et al (2005) Translocation biosensors to study signal-specific nucleo-cytoplasmic transport, protease activity and protein-protein interactions. Traffic 6(7):594–606

    Article  CAS  Google Scholar 

  16. Turk B (2006) Targeting proteases: successes, failures and future prospects. Nature reviews. Drug Discov 5(9):785–799

    Article  CAS  Google Scholar 

  17. Clausen T et al (2011) HTRA proteases: regulated proteolysis in protein quality control. Nature reviews. Mol Cell Biol 12(3):152–162

    CAS  Google Scholar 

  18. Bier C et al (2011) Cell-based analysis of structure-function activity of threonine aspartase 1. J Biol Chem 286(4):3007–3017

    Article  CAS  Google Scholar 

  19. Kar G, Gursoy A, Keskin O (2009) Human cancer protein-protein interaction network: a structural perspective. PLoS Comput Biol 5(12):e1000601

    Article  Google Scholar 

  20. Arkin MR, Whitty A (2009) The road less traveled: modulating signal transduction enzymes by inhibiting their protein-protein interactions. Curr Opin Chem Biol 13(3):284–290

    Article  CAS  Google Scholar 

  21. Bier C et al (2012) Allosteric inhibition of Taspase1’s pathobiological activity by enforced dimerization in vivo. FASEB J 26(8):3421–3429

    Article  CAS  Google Scholar 

  22. Mullard A (2012) Protein-protein interaction inhibitors get into the groove. Nat Rev Drug Discov 11(3):173–175

    Article  CAS  Google Scholar 

  23. Dudgeon DD et al (2010) Characterization and optimization of a novel protein-protein interaction biosensor high-content screening assay to identify disruptors of the interactions between p53 and hDM2. Assay Drug Dev Technol 8(4):437–458

    Article  CAS  Google Scholar 

  24. Carry JC, Garcia-Echeverria C (2013) Inhibitors of the p53/hdm2 protein-protein interaction-path to the clinic. Bioorg Med Chem Lett 23(9):2480–2485

    Article  CAS  Google Scholar 

  25. Rose R et al (2011) Identification and structure of small-molecule stabilizers of 14-3-3 protein-protein interactions. Angew Chem Int Ed Engl 49(24):4129–4132

    Article  Google Scholar 

  26. Ottmann C et al (2009) A structural rationale for selective stabilization of anti-tumor interactions of 14-3-3 proteins by cotylenin A. J Mol Biol 386(4):913–919

    Article  CAS  Google Scholar 

  27. Berggard T, Linse S, James P (2007) Methods for the detection and analysis of protein-protein interactions. Proteomics 7(16):2833–2842

    Article  Google Scholar 

  28. Stauber RH et al (1998) Analysis of intracellular trafficking and interactions of cytoplasmic HIV-1 rev mutants in living cells. Virology 251(1):38–48

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verena Fetz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fetz, V., Stauber, R.H., Knauer, S.K. (2018). Translocation Biosensors—Versatile Tools to Probe Protein Functions in Living Cells. In: Johnston, P., Trask, O. (eds) High Content Screening. Methods in Molecular Biology, vol 1683. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7357-6_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7357-6_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7355-2

  • Online ISBN: 978-1-4939-7357-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics