Skip to main content

Applications and Caveats on the Utilization of DNA-Specific Probes in Cell-Based Assays

  • Protocol
  • First Online:
High Content Screening

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1683))

  • 2932 Accesses

Abstract

To perform cell-based assays using fluorescence as the readout there is a fundamental need to identify individual cellular objects. In the majority of cases this requires the addition of a DNA dye or so-called nuclear counterstain and these have become integral to assay design. End-point assays can use live or fixed cells and thus it is beneficial if such reagents are cell membrane-permeant.

Further, membrane-permeant DNA dyes can open new opportunities in dynamic real time assays with caveats according to the impact of their interaction with the chromatin in live cells. As cell-based assays offer information on the in vitro toxicity of treatments, cell viability has become a basic readout and cell membrane-impermeant fluorescent DNA-specific dyes can provide this information.

In the case of both nuclear counterstaining and viability reporting, it is beneficial if the DNA dyes employed are suitably spectrally separated to permit multi-color experimental design. Methods will be described for these two important assay readouts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Jez M, Bas T, Veber M et al (2013) The hazards of DAPI photoconversion: effects of dye, mounting media and fixative, and how to minimize the problem. Histochem Cell Biol 139:195–204

    Article  CAS  Google Scholar 

  2. Zurek-Biesiada D, Kedracka-Krok S, Dobrucki JW (2013) UV-activated conversion of Hoechst 33258, DAPI, and Vybrant DyeCycle fluorescent dyes into blue-excited, green-emitting protonated forms. Cytometry A 83:441–451

    Article  Google Scholar 

  3. Antczak C, Takagi T, Ramirez CN et al (2009) Live-cell imaging of caspase activation for high-content screening. J Biomol Screen 14:956–969

    Article  CAS  Google Scholar 

  4. Martin RM, Leonhardt H, Cardoso MC (2005) DNA labeling in living cells. Cytometry A 67:45–52

    Article  Google Scholar 

  5. Smith PJ, Blunt N, Wiltshire M et al (2000) Characteristics of a novel deep red/infrared fluorescent cell-permeant DNA probe, DRAQ5, in intact human cells analyzed by flow cytometry, confocal and multiphoton microscopy. Cytometry 40:280–291

    Article  CAS  Google Scholar 

  6. van Zandvoort MA, de Grauw CJ, Gerritsen HC et al (2002) Discrimination of DNA and RNA in cells by a vital fluorescent probe: lifetime imaging of SYTO13 in healthy and apoptotic cells. Cytometry 47:226–235

    Article  Google Scholar 

  7. Visconti RP, Ebihara Y, LaRue AC et al (2006) An in vivo analysis of hematopoietic stem cell potential: hematopoietic origin of cardiac valve interstitial cells. Circ Res 98:690–696

    Article  CAS  Google Scholar 

  8. Loechel F, Bjorn S, Linde V et al (2007) High content translocation assays for pathway profiling. Methods Mol Biol (Clifton, NJ) 356:401–414

    CAS  Google Scholar 

  9. Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2:932–940

    Article  CAS  Google Scholar 

  10. Pelkmans L, Fava E, Grabner H et al (2005) Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature 436:78–86

    Article  CAS  Google Scholar 

  11. Cogger VC, Arias IM, Warren A et al (2008) The response of fenestrations, actin, and caveolin-1 to vascular endothelial growth factor in SK Hep1 cells. Am J Physiol Gastrointest Liver Physiol 295:G137–g145

    Article  CAS  Google Scholar 

  12. Foley KF, De Frutos S, Laskovski KE et al (2005) Culture conditions influence uptake and intracellular localization of the membrane permeable cGMP-dependent protein kinase inhibitor DT-2. Front Biosci 10:1302–1312

    Article  CAS  Google Scholar 

  13. Amersham Biosciences (2003) GFP-Rac1 Assay. User manual, section 5.2.7. 25–8007-27UM, Rev A, 2003

    Google Scholar 

  14. García-Escarp M, Martínez MV, Barquinero J et al (2003) Characterization of the functional activity of the ABCG2 transporter for the development of new expression vectors with in vivo selectable potential. Paper presented at the Il Reunión de la Sociedad Española de Terapia Génica, Barcelona, Spain

    Google Scholar 

  15. Rieger AM, Hall BE, Luong le T et al (2010) Conventional apoptosis assays using propidium iodide generate a significant number of false positives that prevent accurate assessment of cell death. J Immunol Methods 358:81–92

    Article  CAS  Google Scholar 

  16. Haasen D, Wolff M, Valler MJ et al (2006) Comparison of G-protein coupled receptor desensitization-related beta-arrestin redistribution using confocal and non-confocal imaging. Comb Chem High Throughput Screen 9:37–47

    Article  CAS  Google Scholar 

  17. Reznichenko L, Amit T, Youdim MB et al (2005) Green tea polyphenol (−)-epigallocatechin-3-gallate induces neurorescue of long-term serum-deprived PC12 cells and promotes neurite outgrowth. J Neurochem 93:1157–1167

    Article  CAS  Google Scholar 

  18. Rosado A, Zanella F, Garcia B et al (2008) A dual-color fluorescence-based platform to identify selective inhibitors of Akt signaling. PLoS One 3:e1823

    Article  Google Scholar 

  19. Payne S, Wylie P, Edward R, Goulter A (2007) Use of far-red emitting DNA dye DRAQ5 for cell cycle analysis with microplate cytometry. In: Drug Discovery and Technology Conference, Washington DC, USA

    Google Scholar 

  20. May K, Preckel H, Schaaf S, Mumtsidu E (2008) Image-based quantification of cyclin B1 and DNA content during cell cycle using the Opera HCS Platform. In: SBS/ELRIG Drug Discovery Conference, Bournemouth, UK

    Google Scholar 

  21. Hannoush RN (2008) Kinetics of Wnt-driven beta-catenin stabilization revealed by quantitative and temporal imaging. PLoS One 3:e3498

    Article  Google Scholar 

  22. Richardson C (2008) Development of a mechanistic cell-based assay for the identification of JAK2 inhibitors. In: SBS/ELRIG Drug Discovery Conference, Bournemouth, UK

    Google Scholar 

  23. Laakkonen JP, Kaikkonen MU, Ronkainen PH et al (2008) Baculovirus-mediated immediate-early gene expression and nuclear reorganization in human cells. Cell Microbiol 10:667–681

    Article  CAS  Google Scholar 

  24. Errington RJ, Patterson LH, Edward R, Smith PJ (2006) CyTRAKâ„¢ probes: novel nuclear and cytoplasm discriminators compatible with GFP-based HCS and HTS assays. In: Society for Biomolecular Sciences Annual Conference, Seattle

    Google Scholar 

  25. Maiuri L, Luciani A, Giardino I et al (2008) Tissue transglutaminase activation modulates inflammation in cystic fibrosis via PPARgamma down-regulation. J Immunol 180:7697–7705

    Article  CAS  Google Scholar 

  26. Sawada J, Shioda R, Matsuno K, Asai A (2009) Phenotype-based screening of chemical library for mitotic inhibitors. In: High Content Analysis Conference, San Francisco, USA

    Google Scholar 

  27. Andrews D (2011) Automated classification of images generated in high content screening of human cells. MipTec Congress, Basel

    Google Scholar 

  28. Simonen M, Ibig-Rehm Y, Hofmann G et al (2008) High-content assay to study protein prenylation. J Biomol Screen 13:456–467

    Article  CAS  Google Scholar 

  29. Grieshaber SS, Grieshaber NA, Miller N et al (2006) Chlamydia trachomatis causes centrosomal defects resulting in chromosomal segregation abnormalities. Traffic (Copenhagen, Denmark) 7:940–949

    Article  CAS  Google Scholar 

  30. Gustin E, Van Loock M, Van Acker K, Krausz E (2009) Cell health in drug discovery: morphological markers. Paper presented at the High Content Analysis Conference, San Francisco, USA

    Google Scholar 

  31. Berke JM, Fenistein D, Pauwels F et al (2010) Development of a high-content screening assay to identify compounds interfering with the formation of the hepatitis C virus replication complex. J Virol Methods 165:268–276

    Article  CAS  Google Scholar 

  32. Xu JJ, Henstock PV, Dunn MC et al (2008) Cellular imaging predictions of clinical drug-induced liver injury. Toxicol Sci 105:97–105

    Article  CAS  Google Scholar 

  33. Smith PJ, Wiltshire M, Chappell SC et al (2013) Kinetic analysis of intracellular Hoechst 33342–DNA interactions by flow cytometry: misinterpretation of side population status? Cytometry A 83:161–169

    Article  Google Scholar 

  34. Akagi J, Kordon M, Zhao H et al (2013) Real-time cell viability assays using a new anthracycline derivative DRAQ7®. Cytometry A 83A:227–234

    Article  CAS  Google Scholar 

  35. Edward R (2011) DRAQ7â„¢ - a unique far-red viability dye provides new combinations for cell health & in vitro tox assays. Paper presented at the Society for Biomolecular Sciences Annual Conference, Orlando, USA

    Google Scholar 

  36. Zhao H, Oczos J, Janowski P et al (2010) Rationale for the real-time and dynamic cell death assays using propidium iodide. Cytometry A 77:399–405

    Article  Google Scholar 

  37. Smith PJ, Falconer RA, Errington RJ (2013) Micro-community cytometry: sensing changes in cell health and glycoconjugate expression by imaging and flow cytometry. J Microsc 251:113–122

    Article  CAS  Google Scholar 

  38. Siemann DW, Keng PC (1986) Cell cycle specific toxicity of the Hoechst 33342 stain in untreated or irradiated murine tumor cells. Cancer Res 46:3556–3559

    CAS  Google Scholar 

  39. Lacoste J, Young K, Brown CM (2013) Live-cell migration and adhesion turnover assays. Methods Mol Biol (Clifton, NJ) 931:61–84

    Article  CAS  Google Scholar 

  40. Mierke CT (2011) Cancer cells regulate biomechanical properties of human microvascular endothelial cells. J Biol Chem 286:40025–40037

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank Professor Laurence H Patterson, Institute of Cancer Therapeutics, University of Bradford; and Professor Paul J Smith and Professor Rachel J Errington, Institute of Cancer and Genetics, School of Medicine, Cardiff University; and Mr. Stefan Ogrodzinski, Biostatus Ltd., Shepshed, UK for their essential assistance in the preparation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roy Edward .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Edward, R. (2018). Applications and Caveats on the Utilization of DNA-Specific Probes in Cell-Based Assays. In: Johnston, P., Trask, O. (eds) High Content Screening. Methods in Molecular Biology, vol 1683. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7357-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7357-6_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7355-2

  • Online ISBN: 978-1-4939-7357-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics